Abstract:
A digital clock modulator provides a smoothly modulated clock period to reduce emitted electro-magnetic radiation (EMR). The digital clock modulator includes a plurality of delay elements connected in series and receiving as an input an unmodulated clock signal. A multiplexer receives inputs from unequally spaced taps between the delay elements. A control block provides selection inputs to the multiplexer, and receives the unmodulated clock signal from the delay elements. The delay elements include a last delay element providing the unmodulated clock signal to the control block. The last delay element has a predetermined delay for ensuring that the delay elements and related signal paths are in a same stable state before control to the multiplexer changes.
Abstract:
An embodiment of a transmitter includes an amplifier having first and second differential output nodes, a first supply node, a first pull-up impedance having a first node coupled to the first differential output node and having a second node coupled to the supply node, and a second pull-up impedance having a first node coupled to the second differential output node and having a second node coupled to the supply node. An embodiment of a receiver includes an amplifier having first and second differential input nodes, a first supply node, a first pull-up impedance having a first node coupled to the first differential input node and having a second node coupled to the supply node, and a second pull-up impedance having a first node coupled to the second differential input node and having a second node coupled to the supply node. In an embodiment, the transmitter and receiver are capacitively coupled to one another.
Abstract:
A transmitter having at least one channel comprising a first differential circuit driven by a differential data signal, the first differential circuit configured to output the differential data at a first and second output and a first control circuit coupled between the first differential circuit and the first and second output, the first control circuit driven by a drive voltage.
Abstract:
The present invention relates to provide a carbon bed electrolyser (CBE) unit for electrochemical treatment. More particularly the present invention relates to the treatment of recalcitrant wastewater, e.g. from chemical industry. Further the said CBE unit is useful for electrolytic treatment of liquid effluent having very high concentrations of Chemical oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN) and Biochemical Oxygen Demand (BOD), and Total Dissolved Solids (TDS), and for improving biodegradability of the effluent. More particularly, the present invention relates to an electro oxidation process wherein the carbon bed gets regenerated in-situ continuously.
Abstract:
Described herein are various principles for operating a transmitter circuit to reduce noise affecting a signal being generated and reducing jitter. In some embodiments, a circuit is operated in a way that switching occurs at or above a bit rate of transmission, such that at least one switch changes state at least for every bit. Operating the circuit in such a way leads to a switching rate that is above a resonant frequency of the circuit and prevents large oscillations and noise from being inserted into the signal and causing communication problems.
Abstract:
The improved circular secondary clarifier of the present invention requires less surface area and low HRT and provides efficient solids-liquid separation. The improved clarifier has better SS and BOD reduction and provides high under flow solids concentrations, as compared to conventional secondary clarifiers. The improved clarifier is even capable of treating wastewaters containing low MLSS concentration. One of the biggest advantages of improved clarifier is that it does not require a separate sump cum pump house as it removes the settled sludge using suction mechanism thereby reduces capital and recurring cost. Further, it provides natural flocculation, which is essential for agglomeration of solids and increases particle size referred to as ‘floc’ and eliminates provision for a separate flocculation facility thereby reduces capital and recurring costs.
Abstract:
The improved circular secondary clarifier of the present invention requires less surface area and low HRT and provides efficient solids-liquid separation. The improved clarifier has better SS and BOD reduction and provides high under flow solids concentrations, as compared to conventional secondary clarifiers. The improved clarifier is even capable of treating wastewaters containing low MLSS concentration. One of the biggest advantages of improved clarifier is that it does not require a separate sump cum pump house as it removes the settled sludge using suction mechanism thereby reduces capital and recurring cost. Further, it provides natural flocculation, which is essential for agglomeration of solids and increases particle size referred to as ‘floc’ and eliminates provision for a separate flocculation facility thereby reduces capital and recurring costs.