Abstract:
A semiconductor device and a method are provided. The semiconductor device includes a first semiconductor component, a bonding layer and a second semiconductor component. The first semiconductor component includes a first transistor formed on a substrate and a second transistor formed on the substrate and separated from the first transistor. The bonding layer is provided on the first semiconductor component. The second semiconductor component is provided on the bonding layer and includes an acoustic transducer. The acoustic transducer is controlled by the first transistor and the second transistor to execute a photoacoustic sensing. The acoustic transducer comprises a space gap and a least a portion of the space gap is surrounded by the bonding layer.
Abstract:
An image sensor device includes a semiconductor substrate having a first side, and a trench isolation structure dividing the substrate into sensing units. Each sensing unit includes a first gate electrode and a second gate electrode disposed on the first side, and a first pixel and a second pixel extending into the substrate and disposed between the first and second gate electrodes from a top view perspective. The first pixel is disposed under the second pixel and electrically connected to the first gate electrode, and the second pixel is electrically connected to the second gate electrode. A method of manufacturing a semiconductor structure includes forming a trench isolation in a semiconductor substrate; forming a first pixel in the substrate; forming a second pixel in the substrate over the first pixel; forming a first gate structure over the substrate; and forming a second gate structure over the second pixel.
Abstract:
An image sensor structure includes a semiconductor substrate, a plurality of image sensing elements, a reflective element, and a high-k dielectric structure. The image sensing elements are in the semiconductor substrate. The reflective element is in the semiconductor substrate and between the image sensing elements. The high-k dielectric structure is between the reflective element and the image sensing elements.
Abstract:
A semiconductor image sensing structure includes a substrate, an isolation structure, an anti-reflection structure, at least one optical element and a transistor. The substrate has at least one photodiode region. The isolation structure is disposed in the substrate and surrounds the photodiode region. The anti-reflection structure covers the photodiode region. The optical element is disposed over the anti-reflection structure and corresponds to the photodiode region. The transistor is disposed under the photodiode region.
Abstract:
A semiconductor image sensing structure includes a semiconductor substrate having a front side and a back side, a pixel sensor disposed in the semiconductor substrate, a transistor disposed over the front side of the semiconductor substrate, and a reflective structure disposed over the front side of the semiconductor substrate. A gate structure of the transistor and the reflective structure include a same material. A top surface of the gate structure of the transistor and a top surface of the reflective structure are aligned with each other.
Abstract:
An integrated circuit includes a first semiconductor device, a second semiconductor device, and a metal shielding layer. The first semiconductor device includes a first substrate and a first multi-layer structure, and the first substrate supports the first multi-layer structure. The second semiconductor device includes a second substrate and a second multi-layer structure, and the second substrate supports the second multi-layer structure. The metal shielding layer is disposed between the first multi-layer structure and the second multi-layer structure, wherein the metal shielding layer is electrically connected to the second semiconductor device.
Abstract:
A back side illuminated (BSI) image sensor device, includes: a substrate including a front side and a back side opposite to the front side; a radiation-sensing region disposed in the substrate; and a deep trench isolation (DTI) grid disposed in the substrate and defining the radiation-sensing region. The DTI grid extends from the back side toward the front side, and includes a segmented strip in a top view from the back side.
Abstract:
Some embodiments of the present disclosure provide a method of manufacturing a back side illuminated (BSI) image sensor. The method includes receiving a semiconductive substrate; forming a transistor coupled to a photosensitive element at a front side of the semiconductive substrate; forming a deep trench isolation (DTI) at a back side of the semiconductive substrate; forming a doped layer conformally over the DTI; performing a microwave anneal over the back side; forming a non-transparent material inside the DTI; and forming a color filter over the doped layer.