Abstract:
Methods and systems for duct protection of a vehicle are provided. The methods and systems provided include an apparatus for containing a flow of fluid discharged from a fracture in a duct. The apparatus includes a ballistic containment layer and an insulation sheath coupled to the ballistic containment layer. The insulation sheath includes a first air containment layer, an insulation layer, and a second air containment layer.
Abstract:
Motion-damping systems and methods that include motion-damping systems are disclosed herein. The motion-damping systems are configured to damp relative motion between a base structure and an attached component that define a gap therebetween. The systems include an at least substantially rigid tubular structure that defines an internal volume and extends within the gap. The systems also include a magnetic assembly and a magnetically active body. One of the magnetic assembly and the magnetically active body is located within the tubular structure and the other of the magnetic assembly and the magnetically active body is operatively attached to a selected one of the base structure and the attached component. The magnetic assembly is in magnetic communication with the magnetically active body such that a magnetic interaction therebetween resists motion of the attached component relative to the base structure. The methods include dissipating energy with the motion-damping system.
Abstract:
Apparatuses, systems and methods are described for a flywheel system incorporating a rotor made from a high-strength material in an open-core flywheel architecture with a high-temperature superconductive (HTS) bearing technology to achieve the desired high energy density in the flywheel energy storage devices, to obtain superior results and performance, and that eliminates the material growth-matching problem and obviates radial growth and bending mode issues that otherwise occur at various high frequencies and speeds.
Abstract:
Motion-damping systems and methods that include motion-damping systems are disclosed herein. The motion-damping systems are configured to damp relative motion between a base structure and an attached component that define a gap therebetween. The systems include an at least substantially rigid tubular structure that defines an internal volume and extends within the gap. The systems also include a magnetic assembly and a magnetically active body. One of the magnetic assembly and the magnetically active body is located within the tubular structure and the other of the magnetic assembly and the magnetically active body is operatively attached to a selected one of the base structure and the attached component. The magnetic assembly is in magnetic communication with the magnetically active body such that a magnetic interaction therebetween resists motion of the attached component relative to the base structure. The methods include dissipating energy with the motion-damping system.
Abstract:
Methods and systems for duct protection of a vehicle are provided. The methods and systems provided include an apparatus for directing flow discharged from a facture in a duct. The apparatus includes a ballistic containment layer, an air containment layer substantially surrounding the ballistic containment layer, and a vent defined in the ballistic containment layer and the air containment layer. The vent is configured to direct a flow discharged from the duct fracture.
Abstract:
A composite tube is made by applying a mixture of individual reinforcing fibers and a resin onto the interior cylindrical wall of the spinning mandrel.
Abstract:
Methods and systems for duct protection of a vehicle are provided. The methods and systems provided include an apparatus for containing a flow of fluid discharged from a fracture in a duct. The apparatus includes a ballistic containment layer and an insulation sheath coupled to the ballistic containment layer. The insulation sheath includes a first air containment layer, an insulation layer, and a second air containment layer.
Abstract:
Methods and systems for protecting a duct joint are provided. An assembly for protecting a joint formed between a first duct and an adjacent second duct includes a first coupling element coupled about the first duct and a second coupling element coupled about the second duct. The assembly also includes a plurality of axial straps coupled between the first coupling element and the second coupling element such that each axial strap of the plurality of straps forms a loop that encircles a portion of each of the first coupling element and the second coupling element.
Abstract:
An apparatus includes a chamber and a bulk superconductor disposed within the chamber. The apparatus also includes a heating element coupled to the bulk superconductor.