Dislocation stress memorization technique (DSMT) on epitaxial channel devices
    11.
    发明授权
    Dislocation stress memorization technique (DSMT) on epitaxial channel devices 有权
    外延通道器件上的位错应力记忆技术(DSMT)

    公开(公告)号:US09419136B2

    公开(公告)日:2016-08-16

    申请号:US14252147

    申请日:2014-04-14

    Abstract: The present disclosure relates to a transistor device having epitaxial source and drain regions with dislocation stress memorization (DSM) regions that provide stress to an epitaxial channel region, and an associated method of formation. The transistor device has an epitaxial stack disposed over a semiconductor substrate, and a gate structure disposed over the epitaxial stack. A channel region extends below the gate structure between epitaxial source and drain regions located on opposing sides of the gate structure. First and second dislocation stress memorization (DSM) regions have a stressed lattice that generates stress within the channel region. The first and second DSM regions respectively extend from below the epitaxial source region to a first location within the epitaxial source region from below the epitaxial drain region to a second location within the epitaxial drain region. Using the first and second DSM regions to stress the channel region, improves device performance.

    Abstract translation: 本公开涉及具有外延源极和漏极区域的晶体管器件,其具有向外延沟道区域提供应力的位错应力存储(DSM)区域和相关联的形成方法。 晶体管器件具有设置在半导体衬底上的外延层,以及设置在外延层上的栅极结构。 沟道区域在位于栅极结构的相对侧的外延源极和漏极区域之间的栅极结构的下方延伸。 第一和第二位错应力记忆(DSM)区域具有在沟道区域内产生应力的应力晶格。 第一和第二DSM区域分别从外延源区域的下面延伸到外延源区域内的从外延漏极区域下方的第一位置到外延漏极区域内的第二位置。 使用第一和第二DSM区域来压缩通道区域,提高了设备​​性能。

    COUNTER POCKET IMPLANT TO IMPROVE ANALOG GAIN
    12.
    发明申请
    COUNTER POCKET IMPLANT TO IMPROVE ANALOG GAIN 有权
    COUNTER POCKET IMPLANT提高模拟增益

    公开(公告)号:US20150243759A1

    公开(公告)日:2015-08-27

    申请号:US14222759

    申请日:2014-03-24

    Abstract: A method for improving analog gain in long channel devices associated with a semiconductor workpiece is provided. A gate oxide layer is formed on the semiconductor workpiece, and a plurality of gate structures are formed over the gate oxide layer, wherein a first pair of the plurality of gate structures define a short channel device region and a second pair of the plurality of gate structures define a long channel device region. A first ion implantation with a first dopant is performed at a first angle, wherein the first dopant is one of an n-type dopant and a p-type dopant. A second ion implantation with a second dopant is performed at a second angle, wherein the second angle is greater than the first angle. The second dopant is one or an n-type dopant and a p-type dopant that is opposite of the first dopant, and a height of the plurality of gate structures and the second angle generally prevents the second ion implantation from implanting ions into the short channel device region.

    Abstract translation: 提供了一种用于改善与半导体工件相关联的长通道器件中的模拟增益的方法。 在半导体工件上形成栅极氧化层,并且在栅极氧化物层上形成多个栅极结构,其中多个栅极结构中的第一对限定短沟道器件区域和第二对多个栅极 结构定义了一个长通道器件区域。 以第一角度执行具有第一掺杂剂的第一离子注入,其中第一掺杂剂是n型掺杂剂和p型掺杂剂之一。 以第二角度执行具有第二掺杂剂的第二离子注入,其中第二角度大于第一角度。 第二掺杂剂是与第一掺杂剂相反的一种或n型掺杂剂和p型掺杂剂,并且多个栅极结构的高度和第二角度通常防止第二离子注入将离子注入到短路中 通道设备区域。

Patent Agency Ranking