摘要:
Semiconductor structures including two-dimensional (2-D) materials and methods of manufacture thereof are described. By implementing 2-D materials in transistor gate architectures such as field-effect transistors (FETs), the semiconductor structures in accordance with this disclosure include vertical gate structures and incorporate 2-D materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene.
摘要:
A semiconductor device including a Fin FET device includes a fin structure protruding from a substrate layer and having a length extending in a first direction. A channel layer is formed on the fin structure. A gate stack including a gate electrode layer and a gate dielectric layer extending in a second direction perpendicular to the first direction is formed over the channel layer covering a portion of the length of the fin structure. The source and drain contacts are formed over trenches that extend into a portion of a height of the fin structure.
摘要:
Some embodiments of the present disclosure relate to a transistor device formed in a semiconductor substrate containing dopant impurities of a first impurity type. The transistor device includes channel composed of a delta-doped layer comprising dopant impurities of the first impurity type, and configured to produce a peak dopant concentration within the channel. The channel further includes a layer of carbon-containing material overlying the delta-doped layer, and configured to prevent back diffusion of dopants from the delta-doped layer and semiconductor substrate. The channel also includes of a layer of substrate material overlying the layer of carbon-containing material, and configured to achieve steep retrograde dopant concentration profile a near a surface of the channel. In some embodiments, a counter-doped layer underlies the delta-doped layer configured to reduce leakage within the semiconductor substrate, and includes dopant impurities of a second impurity type, which is opposite the first impurity type.
摘要:
The present disclosure, in some embodiments, relates to a memory device. In some embodiments, the memory device comprises a substrate and an interconnect structure disposed over the substrate. The interconnect structure comprises stacked interconnect metal layers disposed within stacked interlayer dielectric (ILD) layers. A memory cell is disposed between an upper interconnect metal layer and an intermediate interconnect metal layer. A selecting transistor is connected to the memory cell and disposed between the intermediate interconnect metal layer and a lower interconnect metal layer. By placing the selecting transistor within the back-end interconnect structure between two interconnect metal layers, front-end space is saved, and more integration flexibility is provided.
摘要:
A semiconductor device including a Fin FET device includes a fin structure protruding from a substrate layer and having a length extending in a first direction. A channel layer is formed on the fin structure. A gate stack including a gate electrode layer and a gate dielectric layer extending in a second direction perpendicular to the first direction is formed over the channel layer covering a portion of the length of the fin structure. The source and drain contacts are formed over trenches that extend into a portion of a height of the fin structure.
摘要:
The present disclosure relates to a transistor device having epitaxial source and drain regions with dislocation stress memorization (DSM) regions that provide stress to a channel region. In some embodiments, the transistor device has an epitaxial source region arranged within a substrate. An epitaxial drain region is arranged within the substrate and is separated from the epitaxial source region by a channel region. A first DSM region, which has a stressed lattice configured to generate stress within the channel region, extends from below the epitaxial source region to a location within the epitaxial source region. A second DSM region, which has a stressed lattice configured to generate stress within the channel region, extends from below the epitaxial drain region to a location within the epitaxial drain region.
摘要:
Some embodiments of the present disclosure relate to a semiconductor device configured to mitigate against parasitic coupling while maintaining threshold voltage control for comparatively narrow transistors. In some embodiments, a semiconductor device formed on a semiconductor substrate. The semiconductor device comprises a channel comprising an epitaxial layer that forms an outgrowth above the surface of the semiconductor substrate, and a gate material formed over the epitaxial layer. In some embodiments, a method of forming a semiconductor device is disclosed. The method comprises etching the surface of a semiconductor substrate to form a recess between first and second isolation structures, forming an epitaxial layer within the recess that forms an outgrowth above the surface of the semiconductor substrate, and forming a gate material over the epitaxial layer. Other embodiments are also disclosed.
摘要:
Some embodiments of the present disclosure relate to an implant that improves long-channel transistor performance with little to no impact on short-channel transistor performance. To mitigate DIBL, both long-channel and short-channel transistors on a substrate are subjected to a halo implant. While the halo implant improves short-channel transistor performance, it degrades long-channel transistor performance. Therefore, a counter-halo implant is performed on the long-channel transistors only to restore their performance. To achieve this, the counter-halo implant is performed at an angle that introduces dopant impurities near the source/drain regions of the long-channel transistors to counteract the effects of the halo implant, while the counter-halo implant is simultaneously shadowed from reaching the channel of the short-channel transistors.
摘要:
The present disclosure relates to a method of forming a transistor device having a carbon implantation region that provides for a low variation of voltage threshold, and an associated apparatus. The method is performed by forming a well region within a semiconductor substrate. The semiconductor substrate is selectively etched to form a recess within the well region. After formation of the recess, a carbon implantation is selectively performed to form a carbon implantation region within the semiconductor substrate at a position underlying the recess. An epitaxial growth is then performed to form one or more epitaxial layers within the recess at a position overlying the carbon implantation region. Source and drain regions are subsequently formed within the semiconductor substrate such that a channel region, comprising the one or more epitaxial layers, separates the source/drains from one another.
摘要:
The present disclosure relates to a transistor device having epitaxial source and drain regions with dislocation stress memorization (DSM) regions that provide stress to an epitaxial channel region, and an associated method of formation. The transistor device has an epitaxial stack disposed over a semiconductor substrate, and a gate structure disposed over the epitaxial stack. A channel region extends below the gate structure between epitaxial source and drain regions located on opposing sides of the gate structure. First and second dislocation stress memorization (DSM) regions have a stressed lattice that generates stress within the channel region. The first and second DSM regions respectively extend from below the epitaxial source region to a first location within the epitaxial source region from below the epitaxial drain region to a second location within the epitaxial drain region. Using the first and second DSM regions to stress the channel region, improves device performance.