-
11.
公开(公告)号:US20220059352A1
公开(公告)日:2022-02-24
申请号:US17520821
申请日:2021-11-08
发明人: Travis J. Anderson , James C. Gallagher , Marko J. Tadjer , Alan G. Jacobs , Boris N. Feigelson
IPC分类号: H01L21/265 , H01L29/20 , H01L29/207 , H01L21/285 , H01L29/45 , H01L21/266 , H01L21/324 , H01L29/36
摘要: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm−3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
-
12.
公开(公告)号:US20210375680A1
公开(公告)日:2021-12-02
申请号:US17327816
申请日:2021-05-24
IPC分类号: H01L21/78 , H01L21/48 , H01L21/02 , H01L23/373 , H01L29/20 , H01L29/24 , H01L29/872 , H01L29/778 , C30B29/40
摘要: Methods for obtaining a free-standing thick (>5 μm) epitaxial material layer or heterostructure stack and for transferring the thick epitaxial layer or stack to an arbitrary substrate. A thick epitaxial layer or heterostructure stack is formed on an engineered substrate, with a sacrificial layer disposed between the epitaxial layer and the engineered substrate. When the sacrificial layer is removed, the epitaxial layer becomes a thick freestanding layer that can be transferred to an arbitrary substrate, with the remaining engineered substrate being reusable for subsequent material layer growth. In an exemplary case, the material layer is a GaN layer and can be selectively bonded to an arbitrary substrate to selectively produce a Ga-polar or an N-polar GaN layer.
-
公开(公告)号:US11131039B2
公开(公告)日:2021-09-28
申请号:US16420366
申请日:2019-05-23
发明人: Karl D. Hobart , Tatyana I. Feygelson , Marko J. Tadjer , Travis J. Anderson , Andrew D. Koehler , Samuel Graham, Jr. , Mark Goorsky , Zhe Cheng , Luke Yates , Tingyu Bai , Yekan Wang
摘要: A method for growing polycrystalline diamond films having engineered grain growth and microstructure. Grain growth of a polycrystalline diamond film on a substrate is manipulated by growing the diamond on a nanopatterned substrate having features on the order of the initial grain size of the diamond film. By growing the diamond on such nanopatterned substrates, the crystal texture of a polycrystalline diamond film can be engineered to favor the preferred orientation texture, which in turn enhances the thermal conductivity of the diamond film.
-
公开(公告)号:US20190157181A1
公开(公告)日:2019-05-23
申请号:US15945803
申请日:2018-04-05
发明人: Karl D. Hobart , Andrew D. Koehler , Francis J. Kub , Travis J. Anderson , Tatyana I. Feygelson , Marko J. Tadjer , Lunet E. Luna
IPC分类号: H01L23/373 , H01L29/20 , H01L29/205 , H01L29/45 , H01L29/47 , H01L29/778 , H01L29/66 , H01L21/48
摘要: A device structure and method for improving thermal management in highly scaled, high power electronic and optoelectronic devices such as GaN FET and AlGaN/GaN HEMT devices by implementing diamond air bridges into such devices to remove waste heat. The diamond air bridge can be formed from a polycrystalline diamond material layer which can be grown on the surface of a dielectric material layer, on the surface of a III-nitride material, or on the surface of a diamond polycrystalline nucleation layer, and may be optimized to have a high thermal conductivity at the growth interface with the underlying material.
-
公开(公告)号:US20170261376A1
公开(公告)日:2017-09-14
申请号:US15606575
申请日:2017-05-26
CPC分类号: G01J5/20 , C23C16/45525 , G01J5/024 , G01J5/0275 , G01J5/084 , G01J5/0853 , G01J5/089 , G01J2005/204 , G02B1/10 , G02B1/11 , G02B1/14 , G02B1/18 , G02B5/003 , G02F1/0147 , H01L37/00 , Y10T156/10
摘要: A method of making a variable emittance window comprising providing a metal foil substrate, applying an antireflection material layer onto the metal foil substrate, applying a protection material layer onto the antireflection material layer, applying a variable emittance material layer onto the protection material layer, annealing to form a two-step variable emittance layer, applying a transparent low emittance material layer to the two-step variable emittance layer, adhering a transparent substrate to the transparent low emittance material layer, and removing the metal foil substrate.
-
公开(公告)号:US20160211341A1
公开(公告)日:2016-07-21
申请号:US15080624
申请日:2016-03-25
发明人: Andrew D. Koehler , Travis J. Anderson , Marko J. Tadjer , Karl D. Hobart , Tatyana I. Feygelson
IPC分类号: H01L29/47 , H01L29/205 , H01L29/66 , H01L29/20
CPC分类号: H01L29/475 , H01L29/1066 , H01L29/2003 , H01L29/205 , H01L29/267 , H01L29/432 , H01L29/66462 , H01L29/7786
摘要: A field effect transistor having a diamond gate electrode and a process for forming the same. In some embodiments, the device is an AlGaN/GaN high-electron-mobility transistor (HEMT). The diamond gate electrode is formed so that it directly contacts the barrier layer. In some embodiments, the diamond gate electrode is formed from boron-doped nanocrystalline diamond (NCD), while in other embodiments, the diamond gate electrode is formed from single crystal diamond.
-
公开(公告)号:US20240136180A1
公开(公告)日:2024-04-25
申请号:US18490878
申请日:2023-10-19
发明人: Marko J. Tadjer , Joseph A. Spencer , Alan G. Jacobs , Hannah N. Masten , James Spencer Lundh , Karl D. Hobart , Travis J. Anderson , Tatyana I. Feygelson , Bradford B. Pate , Boris N. Feigelson
IPC分类号: H01L21/02 , H01L29/24 , H01L29/778 , H01L29/78 , H01L29/80
CPC分类号: H01L21/02565 , H01L21/02304 , H01L21/02527 , H01L21/0262 , H01L29/24 , H01L29/7787 , H01L29/785 , H01L29/802
摘要: A method for growing nanocrystalline diamond (NCD) on Ga2O3 to provide thermal management in Ga2O3-based devices. A protective SiNx interlayer is deposited on the Ga2O3 before growth of the NCD layer to protect the Ga2O3 from damage caused during growth of the NCD layer. The presence of the NCD provides thermal management and enables improved performance of the Ga2O3-based device.
-
公开(公告)号:US20230352600A1
公开(公告)日:2023-11-02
申请号:US18308948
申请日:2023-04-28
发明人: Marko J. Tadjer , Hannah N. Masten , Joseph A. Spencer , Alan G. Jacobs , Karl D. Hobart , Yuhao Zhang
IPC分类号: H01L29/872 , H01L29/24 , H01L21/02 , H01L29/66
CPC分类号: H01L29/872 , H01L29/24 , H01L21/02414 , H01L21/02565 , H01L21/02576 , H01L29/66969
摘要: Ga2O3-based rectifier structure and method of forming the same. A Schottky diode structure is combined with a metal-oxide-semiconductor structure to provide a metal oxide-type Schottky barrier diode (MOSSBD) rectifier that includes an n-type β-Ga2O3 drift layer on a β-Ga2O3 substrate, the drift layer having a plurality of spaced-apart semi-insulating regions formed by in-situ ion implantation of acceptor species at predefined spatially defined regions of the drift layer to create alternating areas of n-type and semi-insulating regions within the n-type drift layer. The thus-formed structure achieves high forward bias current with low specific on-resistance when the anode is biased with positive voltage and low leakage current when the device is operated under reverse bias.
-
19.
公开(公告)号:US20220059353A1
公开(公告)日:2022-02-24
申请号:US17520830
申请日:2021-11-08
发明人: Travis J. Anderson , James C. Gallagher , Marko J. Tadjer , Alan G. Jacobs , Boris N. Feigelson
IPC分类号: H01L21/265 , H01L29/20 , H01L29/207 , H01L21/285 , H01L29/45 , H01L21/266 , H01L21/324 , H01L29/36
摘要: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm−3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
-
20.
公开(公告)号:US11201058B2
公开(公告)日:2021-12-14
申请号:US16927061
申请日:2020-07-13
发明人: Travis J. Anderson , James C. Gallagher , Marko J. Tadjer , Alan G. Jacobs , Boris N. Feigelson
IPC分类号: H01L21/265 , H01L29/20 , H01L29/207 , H01L21/285 , H01L29/45 , H01L21/266 , H01L21/324 , H01L29/36
摘要: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm−3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
-
-
-
-
-
-
-
-
-