摘要:
A metal silicide fuse for a semiconductor device. A conductive region of the fuse may be disposed adjacent a common well of semiconductive material of a first conductivity type. A terminal region of the fuse may be disposed adjacent a well of semiconductive material of a second conductivity type. A narrowed region of the fuse, which is disposed between the terminal region and the conductive region, is disposed adjacent a boundary between the two wells. Upon applying at least a programming current to the fuse, the fuse preferably “blows” at the narrowed region. The diode or diodes between the different conductivity type wells and the Schottky diode or diodes between the remaining portions of the fuse and adjacent wells of the semiconductor device control the flow of current through the remainder of the fuse and through the adjacent conductive wells of the semiconductor device. Thus, if the fuse “blows” as desired, the diodes and Schottky diodes formed by the fuse and the adjacent conductive wells will prevent current at a normal operating voltage from flowing through the conductive wells of the semiconductor device. The present invention also includes methods of fabricating a fuse.
摘要:
A static random access memory cell comprising a first invertor including a first p-channel pullup transistor, and a first n-channel pulldown transistor in series with the first p-channel pullup transistor; a second invertor including a second p-channel pullup transistor, and a second n-channel pulldown transistor in series with the second n-channel pullup transistor, the first invertor being cross-coupled with the second invertor, the first and second pullup transistors sharing a common active area; a first access transistor having an active terminal connected to the first invertor; a second access transistor having an active terminal connected to the second invertor; and an isolator isolating the first pullup transistor from the second pullup transistor.
摘要:
A method for use in the fabrication of semiconductor devices includes forming a titanium nitride film and depositing a silicon hard mask over the titanium nitride film. The silicon hard mask is used to pattern a titanium nitride interconnect from the titanium nitride film and the silicon hard mask is also used as a contact etch stop for forming a contact area. In forming the interconnect, the silicon hard mask is dry etched stopping selectively on and exposing portions of the titanium nitride film and the exposed portions of the titanium nitride film are etched resulting in the titanium nitride interconnect. In using the silicon hard mask as a contact etch stop, an insulating layer is deposited over the silicon hard mask and the insulating layer is etched using the silicon hard mask as an etch stop to form the contact area. The silicon hard mask is then converted to a metal silicide contact area. Interconnects formed using the method are also described.
摘要:
A method of creating ultra-small nibble structures using a modification of an already existing mask includes the steps of depositing a layer of nitride on a circuit being fabricated according to standard MOSFET process steps. A layer of photoresist is patterned using a modification of an existing mask, such as a contact mask modified to include a nibble pattern. The nitride layer and an underlying oxide layer are removed according to the patterned photoresist to create a contact opening and an opening over the field oxide. Spacers may be created in the opening over the field oxide. A conductive layer and a polysilicon layer exposed in the opening over the field oxide are removed extending the opening down to the field oxide to create a nibble structure in the polysilicon layer.
摘要:
A retrograde well region, having a buried layer of high conductivity, is formed in a semiconductor substrate. A trench structure is selectively etched in the semiconductor substrate down to a region proximate to or within the buried layer. A conducting local interconnect material is formed within and proximate to the trench structure to electrically connect surface portions of the substrate to the buried layer. The buried layer is used to provide a voltage source to an integrated circuit. In one application, a P-type buried layer provides ground potential or V.sub.SS to a source region of an N-channel FET transistor. In a second application, an N-type buried layer provides supply potential or V.sub.CC to a source of a P-channel FET transistor.
摘要:
A scheme and method of fabrication for creating bipolar semiconductor devices with reduced size and greater speed while maintaining device isolation. Using a mesa structure isolated by trenches, collector contact is achieved by a vertical layer of polysilicon surrounding the mesa, deposited within the trench during fabrication.
摘要:
Some embodiments include methods of forming memory cells. Such methods can include forming a first electrode, a second electrode, and a memory element directly contacting the first and second electrodes. Forming the memory element can include forming a programmable portion of the memory element isolated from the first electrode by a first portion of the memory element and isolated from the second electrode by a second portion of the memory element. Other embodiments are described.
摘要:
Fuses for integrated circuits and semiconductor devices and methods for using the same. The semiconductor fuse contains two conductive layers, an overlying and underlying refractory metal nitride layer, on an insulating substrate. The semiconductor fuse may be fabricated during manufacture of a local interconnect structure including the same materials. The fuse, which may be used to program redundant circuitry, may be blown by electrical current rather than laser beams, thus allowing the fuse width to be smaller than prior art fuses blown by laser beams. The fuse may also be blown by less electrical current than the current required to blow conventional polysilicon fuses having similar dimensions.
摘要:
Some embodiments include apparatus and methods having a memory element configured to store information and an access component configured to allow conduction of current through the memory element when a first voltage difference in a first direction across the memory element and the access component exceeds a first voltage value and to prevent conduction of current through the memory element when a second voltage difference in a second direction across the memory element and the access component exceeds a second voltage value, wherein the access component includes a material excluding silicon.
摘要:
In one implementation, a method of forming a field effect transistor includes etching an opening into source/drain area of a semiconductor substrate. The opening has a base comprising semiconductive material. After the etching, insulative material is formed within the opening over the semiconductive material base. The insulative material less than completely fills the opening and has a substantially uniform thickness across the opening. Semiconductive source/drain material is formed within the opening over the insulative material within the opening. A transistor gate is provided operatively proximate the semiconductive source/drain material. Other aspects and implementations are contemplated.