摘要:
The invention relates to a cartridge (110) and an examination apparatus (100) for optical examinations of a sample. The cartridge (110) comprises a transparent bottom layer (113) that is of substantially uniform thickness and a top layer (111, 112) comprising a sample chamber (SC). The bottom layer and the top layer are preferably laminated onto each other, for example in a C roll-to-roll process. The bottom layer (113) is provided with structures like gratings (115) that allow the incoupling or outcoupling of light.
摘要:
An illumination detection system comprises an excitation radiation source and associated radiation processing arrangement, and a focusing arrangement for focusing the excitation radiation from the radiation processing arrangement onto an analysis region of a sample. A radiation collection arrangement collects radiation from the analysis region of the sample resulting from the excitation, and a detector detects the collected radiation. The focused excitation radiation comprises an excitation line which is evanescent in the sample. This combines the advantages of line scanning (reduced analysis time) and evanescent excitation (reduced background signal) and therewith enables increased measurement speed and precision for point of care application.
摘要:
A lithographic apparatus is disclosed. The apparatus includes a source for supplying hydrogen radicals, a guide for use in conjunction with the source, for directing hydrogen radicals to an application surface to be targeted by the hydrogen radicals. The guide is provided with a coating having a hydrogen radical recombination constant of less than 0.2. In this way, the radicals can be transported with reduced losses and are able to better interact with remaining contaminants on application surfaces, such as mirror surfaces.
摘要:
A multi-layer mirror includes a multi-layer stack. The multi-layer stack includes a plurality of alternating layers with a multi-layer stack top layer and a spectral filter top layer arranged on the multi-layer stack. The spectral filter top layer includes a first spectral purity enhancement layer that includes a first material m1 and has a first layer thickness d1, an intermediate layer that includes a second material m2 and has a second layer thickness d2. The intermediate layer is arranged on the multi-layer stack top layer. The first material is selected from SiN, Si3N4, SiO2, ZnS, Te, diamond, CsI, Se, SiC, amorphous carbon, MgF2, CaF2, TiO2, Ge, PbF2, ZrO2, BaTiO3, LiF or NaF. The second material includes a material different from the first material, and d1+d2 has a thickness between 1.5 and 40 nm.
摘要:
The invention relates to an optical system that particularly allows an improved detection of signal light propagating from a light source (1) through a flat glass substrate (11). SC-modes of this signal light that would normally be totally internally reflected at the backside (10) of the substrate (11) are coupled out by a first diffractive optical element DOE (21). To map all signal light leaving the substrate (11) onto a single target location (51), a focusing lens (31) and a second DOE (41) are disposed in the optical path behind the substrate (11). The DOEs (21, 41) may for example be a ID sinusoidal grating or a 2D blaze grating. The optical system may particularly be applied in an investigation apparatus for detecting multiple spots of a fluorescent sample material.
摘要:
The invention relates to a method and an apparatus for the investigation of a sample material that is stored in the sample chamber (303) of a storage unit (300). A multi-spot generator MSG (100) and a transmission section (200) generate an array of sample light spots (501) within the sample chamber. Input light (504) that leaves the storage unit (300) in forward direction is mapped onto a CCD array (401) and measured as reference. Moreover, fluorescence light (500) that is stimulated in the sample chamber (303) is measured by a second CCD array which is disposed perpendicular to the optical path of the input light (504).
摘要:
An optical sensor apparatus for use in an extreme ultraviolet lithographic system is disclosed. The apparatus includes an optical sensor comprising a sensor surface and a removal mechanism configured to remove debris from the sensor surface. Accordingly, dose and/or contamination measurements may be carried out conveniently for the lithographic system.
摘要:
An imaging apparatus is disclosed for combined temperature and luminescence spatial imaging of an object (1), such as a bio-array for detection of biological molecules. Light (5) is separated into a first (10) and a second (20) optical path, where the first optical path (10) guides infrared (IR), and the second optical path (20) guides luminescence light, preferably fluorescence light, from the object (1). Image intensifying means (30) converts infrared light (10a) in the first optical path into intensified light (10b), preferably visible light. Photo detection means (100) are arranged for spatial imaging of the object (1), the photo detection means being arranged for alternately receiving light from the first (10) and the second (20) optical path. Processing means (200) are capable of combining a temperature image (11) with a luminescence image (21) so as to obtain a combined image (25) of the object with a direct spatial correspondence between the two images. For bio-arrays this provides many advantages in relation to combined imaging of an array, whereupon numerous probe molecules are located.
摘要:
A method for the removal of a deposition on an optical element of an apparatus including the optical element includes providing an H2 containing gas and one or more additional compounds selected from the group of hydrocarbon compounds and silane compounds in at least part of the apparatus includes producing hydrogen radicals from H2 from the H2 containing gas; and bringing the optical element with deposition into contact with at least part of the hydrogen radicals and removing at least part of the deposition. Further, a method for the protection of an optical element of an apparatus including the optical element includes providing a cap layer to the optical element by a deposition process; and during or after use of the apparatus, removing at least part of the cap layer from the optical element in a removal process as described above. The methods can be applied in a lithographic apparatus.
摘要:
A cleaning arrangement for a lithographic apparatus module may be provided in a collector. The cleaning arrangement includes a hydrogen radical source configured to provide a hydrogen radical containing gas to at least part of the module and a pump configured to pump gas through the module such that a flow speed of the hydrogen radical containing gas provided through at least part of the module is at least 1 m/s. The cleaning arrangement may also include a gas shutter configured to modulate a flow of the hydrogen radical containing gas to at least part of the module, a buffer volume of at least 1 m3 in communication with the module, and a pump configured to provide a gas pressure in the buffer volume between 0.001 mbar (0.1 Pa) and 1 mbar (100 Pa). The cleaning arrangement may further include a gas return system.