摘要:
A method including operating an ion implanted to implanting ions in a semiconductor wafer at a first ion dose level; performing a first thermal wave measurement to obtain the first thermal wave value; placing the semiconductor wafer in a rapid thermal annealing furnace and operating the furnace to rapidly heat the semiconductor wafer at a first rate for a first time period and so that the wafer is heated with intent of achieving a wafer temperature of 500° C.; performing a second thermal wave measurement to obtain a second thermal wave value; comparing the difference between the first thermal wave value and the second thermal wave value to a target range of 376.5-382.5 and rejecting the wafer as being outside of an acceptable specification if the difference is outside of the target range.
摘要:
A ventilated platen/polishing pad assembly for chemical mechanical polishing copper conductors on a semiconductor wafer is disclosed. The ventilated platen is constructed by a platen having a multiplicity of apertures through a thickness of the platen, and a polishing pad that has a multiplicity of apertures for fluid communication with the multiplicity of apertures in the platen such that a gas can flow through the ventilated platen and the ventilated polishing pad to mix with a polishing slurry solution dispensed on top of the polishing pad. When an oxidizing gas is mixed with the slurry solution, the mass transfer process during the chemical mechanical polishing can be improved and thus improving the polishing uniformity of the copper surface. The invention further discloses a method for chemical mechanical polishing copper conductors on a semiconductor wafer by dispensing a polishing slurry/oxidizing gas mixture onto a top surface of a polishing pad for engaging a wafer surface and thus improving the polishing uniformity and preventing corrosion or erosion of the fresh copper surface by the acidic or basic components contained in the slurry solution.
摘要:
An electrostatic charge-free solvent-type dryer for drying semiconductor wafers after a wet bench process is disclosed in a preferred embodiment and in an alternate embodiment. In the preferred embodiment, the electrostatic charge-free solvent-type dryer is constructed by a tank body, a wafer carrier, an elevator means, a tank cover and a conduit for feeding the flow of solvent vapor. At least one of the tank cover, the conduit for feeding the flow of solvent vapor and the plurality of partition plates is fabricated of a non-electrostatic material such that electrostatic charge is not generated in the flow of solvent vapor. In the alternate embodiment, a deionizer is further provided in the tank cavity for producing a flux of positive ions to neutralize any negative ions that are possibly produced in the flow of solvent vapor.
摘要:
A method for forming a dielectric layer upon a silicon layer. There is first provided a substrate employed within a microelectronics fabrication. There is then formed over the substrate a silicon layer. There is then formed through use of a first thermal annealing method employing a nitrogen containing annealing atmosphere in absence of an oxidizing material or a reducing material silicon nitride containing layer upon a partially consumed silicon layer derived from the silicon layer. There is then oxidized through use of a second thermal annealing method employing an oxidizing material containing atmosphere the silicon nitride containing layer to form an oxidized silicon nitride containing layer upon a further consumed silicon layer derived from the partially consumed silicon layer. The method is particularly useful in forming a gate dielectric layer with enhanced hot carrier resistance properties and enhanced dopant diffusion barrier properties within a field effect transistor (FET).
摘要:
Within a method for removing from over a substrate a chemical mechanical polish (CMP) residue layer there is first provided a substrate. There is then formed over the substrate: (1) a chemical mechanical polish (CMP) substrate layer having an aperture formed therein; (2) a chemical mechanical polish (CMP) planarized patterned layer formed within the aperture within the chemical mechanical polish (CMP) substrate layer; and (3) a chemical mechanical polish (CMP) residue layer formed upon at least one of the chemical mechanical polish substrate layer and the chemical mechanical polish (CMP) planarized patterned layer, where at least one of the chemical mechanical polish (CMP) substrate layer and the chemical mechanical polish (CMP) planarized patterned layer has a first aqueous contact angle. There is then treated the at least one of the chemical mechanical polish (CMP) substrate layer and the chemical mechanical polish (CMP) planarized patterned layer having the first aqueous contact angle to provide at least one of a hydrophilic chemical mechanical polish (CMP) substrate layer and a hydrophilic chemical mechanical polish (CMP) planarized patterned layer having a second aqueous contact angle less than the first aqueous contact angle. Finally, there is then removed the chemical mechanical polish (CMP) residue layer from the at least one of the hydrophilic chemical mechanical polish (CMP) substrate layer and the hydrophilic chemical mechanical polish (CMP) planarized patterned layer with an aqueous cleaner composition.
摘要:
A method for forming a silicon oxide gate oxide dielectric layer upon a silicon semiconductor substrate employed within a microelectronics fabrication. There is provided a silicon semiconductor substrate. There is then formed upon the silicon semiconductor substrate, empolying thermal annealing of the silicon semiconductor substrate at an elevated temperature in a gas mixture of oxygen, hydrogen and a diluent gas, a silicon oxide gate oxide dielectric layer with enhanced dielectric properties and more precise control of the silicon oxide dielectric layer thickness.
摘要:
A method of monitoring and adjusting the position of a wafer with respect to an ion beam including setting the position of a wafer holder so that a wafer to be held therein is positioned at a tilt angle of 45 degrees and a twist angle of 45 degrees with respect to the path of an ion beam; positioning a n-type wafer without screen oxide in the wafer holder; implanting boron species into a region of the wafer at 160 KeV and a dose level of 5.0×1013 atoms/cm2; periodically measuring the sheet resistivity of a implanted wafer and readjusting the wafer tilt angle when the sheet resistivity is greater than 30 ohms/square.
摘要翻译:一种监测和调整晶片相对于离子束的位置的方法,包括设置晶片保持器的位置,使得待保持在其中的晶片位于45度的倾斜角度和45度的扭转角度, 相对于离子束的路径; 将没有荧光体氧化物的n型晶片定位在晶片保持器中; 在160KeV下将硼物质注入晶片的区域,并且剂量水平为5.0×10 3原子/ cm 2; 周期性地测量植入晶片的片电阻率,并且当片电阻率大于30欧姆/平方时重新调整晶片倾斜角。
摘要:
An improved and new process, used for the elimination of copper line damage, copper defects, non-uniformity improvement, with low dishing and erosion, in damacene processing, is disclosed. This invention relates to a method of fabrication used for semiconductor integrated circuit devices, and more specifically to the elimination of copper line damage for damascene processing, by depositing a multilayer interface material, consisting of a mechanically hard film and a soft film, over a low dielectric constant, interlevel metal dielectric (IMD), and subsequently chemical mechanical polishing (CMP) back the excess material to planarize the surface.
摘要:
A method for preventing oxide layer peeling in a high temperature annealing process including providing a plurality of spaced apart stacked semiconductor wafers for carrying out a high temperature annealing process including ambient nitrogen gas the plurality of spaced apart stacked semiconductor wafers stacked such that a process surface including an oxide layer of at least one semiconductor wafer is adjacent to a backside surface of another semiconductor wafer said backside surface having a layer of silicon nitride formed thereon prior to carrying out the high temperature annealing process; and, carrying out the high temperature annealing process.
摘要:
A method for cleaning a silicon wafer by a wet bench method with improved cleaning efficiency and without oxide formation is disclosed. In the method, the wafer may first be cleaned in a first cleaning solution that includes a base or an acid, and then the wafer is rinsed in a second solution that includes DI water and ozone. The ozone concentration in the DI water may be between about 1 ppm and about 20 ppm, and preferably between about 3 ppm and about 10 ppm. A diluted HF cleaning step may be utilized after the ozone/DI water rinsing step to remove any possible oxide formation on the silicon surface before a final rinsing step and drying step.