摘要:
An embodiment of the instant invention is a method of fabricating a planar conductive via in an opening through a dielectric layer having a top surface, a bottom surface and the opening having sides, the method comprising the steps of: depositing a first conductive material (114 of FIG. 7d) on the top surface of the dielectric layer and in the opening in the dielectric layer to substantially fill the opening with the conductive material; removing the portion of the first conductive material located on the dielectric layer and removing a portion of the first conductive material located in the opening in the dielectric layer to recess (406 of FIG. 7d) the first conductive material below the top surface of the dielectric layer; depositing a second conductive material (704 of FIG. 7d) in the recess to form a substantially planar top surface substantially coplanar with the top surface of the dielectric layer; and forming a third conductive material (302 of FIG. 7d) on the second conductive material, at least one of the second conductive material and the third conductive material acting as a diffusion barrier to prevent oxidation of the first conductive material.
摘要:
A capacitor structure and method. The capacitor (12) comprises a HDC dielectric (40) and upper (44) and lower electrodes. The lower electrode comprises polysilicon(31-32), a diffusion barrier (34) on the polysilicon and an oxygen stable material (36) on the diffusion barrier (34). The oxygen stable material (36) is formed by first forming a disposable dielectric layer (50) patterned and etched to expose the area where the storage node is desired and then depositing the oxygen stable material (36). The oxygen stable material (36) is then either etched back or CMP processed using the disposable dielectric layer (50) as an endpoint. The disposable dielectric layer (50) is then removed. The HDC dielectric (40) is then formed adjacent the oxygen stable material (36).
摘要:
A capacitor structure and method. The capacitor (12) comprises a HDC dielectric (40) and upper (44) and lower electrodes. The lower electrode comprises polysilicon(31-32), a diffusion barrier (34) on the polysilicon and an oxygen stable material (36) on the diffusion barrier (34). The diffusion barrier (34) is deposited followed by the deposition of a temporary dielectric layer (50). The temporary dielectric layer (50) is then patterned and etched to expose the area where the storage node is desired. Next, the oxygen stable material (36) is deposited. The oxygen stable material (36) is then either etched back or CMP processed using the temporary dielectric layer (50) as an endpoint. The temporary dielectric layer (50) is then removed along with the exposed portions of diffusion barrier (34). The HDC dielectric (40) is then formed adjacent the oxygen stable material (36).
摘要:
A self-timed sense amplifier read buffer pulls down a pre-charged high global bit line, which then feeds data into a tri state write back buffer that is connected directly to the bit line. The bit line provides charge to a ferroelectric capacitor to write a logical “one” or “zero” while by-passing an isolator switch disposed between the sense amplifier and the ferroelectric capacitor. Because the sense amplifier uses grounded bit line sensing, the read buffer will not start pulling down the global bit line until after the sense amplifier signal amplification, which makes the timing of the control signal for this read buffer non-critical. The write-back buffer enable timing is also self-timed off of the sense amplifier. Therefore, the read data write-back to a ferroelectric memory cell is locally controlled and begins quickly after reading data from the ferroelectric memory cell, thereby allowing a quick cycle time.
摘要:
A ferroelectric memory capacitor is formed by forming a barrier layer, a first metal layer, a ferroelectric layer, a second metal layer, and a hard mask layer, on dielectric layer (70). Using the patterned hard mask layer (255), the layers are etched to form an etched barrier layer (205), and etched first metal layer (215), and etched ferroelectric layer (225), and etched second metal layers (235, 245). The etched layers form a ferroelectric memory capacitor (270) with sidewalls that form an angle with the plane of the upper surface of the dielectric layer (70) between 78° and 88°. The processes used to etch the layers are plasma processes performed at temperatures between 200° C. and 500° C.
摘要:
A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
摘要:
Hydrogen barriers and fabrication methods are provided for protecting ferroelectric capacitors (CFE) from hydrogen diffusion in semiconductor devices (102), wherein nitrided aluminum oxide (N—AlOx) is formed over a ferroelectric capacitor (CFE), and one or more silicon nitride layers (112, 117) are formed over the nitrided aluminum oxide (N—AlOx). Hydrogen barriers are also provided in which an aluminum oxide (AlOx, N—AlOx) is formed over the ferroelectric capacitors (CFE), with two or more silicon nitride layers (112, 117) formed over the aluminum oxide (AlOx, N—AlOx), wherein the second silicon nitride layer (112) comprises a low silicon-hydrogen SiN material.
摘要:
One aspect of the invention relates to a method of manufacturing an integrated circuit comprising forming an array of ferroelectric memory cells on a semiconductor substrate, heating the substrate to a temperature near a Curie temperature of the ferroelectric cores, and subjecting the substrate to a temperature program, whereby thermally induced stresses on the ferroelectric cores cause a switched polarization of the cores to increase by at least about 25% as the cores cool to about room temperature. Embodiments of the invention include metal filled vias of expanded cross-section above and below the ferroelectric cores, which increase the thermal stresses on the ferroelectic cores during cooling.
摘要:
Semiconductor devices and fabrication methods are disclosed, in which one or more low silicon-hydrogen SiN barriers are provided to inhibit hydrogen diffusion into ferroelectric capacitors and into transistor gate dielectric interface areas. The barriers may be used as etch stop layers in various levels of the semiconductor device structure above and/or below the level at which the ferroelectric capacitors are formed so as to reduce the hydrogen related degradation of the switched polarization properties of the ferroelectric capacitors and to reduce negative bias temperature instability in the device transistors.
摘要:
A ferroelectric device fabrication process is described in which ferroelectric device contaminant substances (e.g., Pb, Zr, Ti, and Ir) that are incompatible with standard CMOS fabrication processes are tightly controlled. In particular, specific etch chemistries have been developed to remove incompatible substances from the backside and edge surfaces of the substrate after a ferroelectric device has been formed. In addition, a sacrificial layer may be disposed over the bottom and edge surfaces (and, in some embodiments, the frontside edge exclusion zone surface) of the substrate to assist in the removal of difficult-to-etch contaminants (e.g., Ir). In this way, the ferroelectric device fabrication process may be integrated with a standard semiconductor fabrication process, whereby ferroelectric devices may be formed together with semiconductor integrated circuits without substantial risk of cross-contamination through shared equipment (e.g., steppers, metrology tools, and the like).