Abstract:
Images with respect to an object at an ordering, payment, and delivery locations can be captured utilizing an image capturing system. Capture can be after detecting the presence of the object at each location utilizing an object presence sensor. The captured image can be processed to associate it with a signature and can also be processed in order to extract a small region of interest (e.g., license plate) and can be reduced to a unique signature. Signature can be stored into a database together with the corresponding order and images. Signatures can be matched. The order associated with the object matched by the system together with at least one of the images captured at the delivery point and the order point can be displayed at a user interface located at the payment/delivery point to ensure that the right order is delivered to the right customer associated with the object.
Abstract:
A computer-implemented method, system, and computer-readable medium is disclosed for determining a sequence order for vehicles in one or more image frames from an operational video, the operational video acquired from a fixed video camera comprising a field of view associated with a vehicle merge area where upstream traffic from a first lane and upstream traffic from a second lane merge to a single lane. The method can include obtaining operational video from a fixed video camera; detecting, within a region of interest (ROI) of the one or more image frames from the operational video, a first area and a second area in the vehicle merge area using a trained classifier that is trained to detect the first area and the second area; and determining the sequence order of the vehicles based on the first area and the second area that are detected.
Abstract:
A method, non-transitory computer readable medium, and apparatus for side-by-side traffic location load balancing are disclosed. For example, the method receives one or more video images of a side-by-side traffic location, determines a number of cars in a first lane and a number of cars in a second lane of the side-by-side traffic location based upon the one or more video images, calculates a delta between the number of cars in the first lane and the number of cars in the second lane and recommends the first lane or the second lane based upon the delta and a respective weighting factor associated with the first lane and the second lane to provide a load balance of the cars at the side-by-side traffic location.
Abstract:
Video-based object tracking accuracy is improved by a tentative identification of objects to be tracked. An identified blob that does not encompass a previously established set of tracking features (“tracker”) triggers initialization of an infant tracker. If that tracker remains the only tracker or becomes the “oldest” tracker associated with a blob identified in subsequent video frames, the “age” of the tracker is increased. If, in subsequent frames, the tracker is encompassed by a blob that is associated with an “older” tracker, the “age” of the tracker is decreased. Infant trackers that reach or exceed a threshold “age” are promoted to adult status. Adult trackers can be processed as being associated with valid objects. Trackers established for blobs identified due to mask segmentation tend not to cause false object detections. When segmentation is corrected, blob segments are combined and redundant trackers for the associated object are demoted and ignored.
Abstract:
A method for processing an image of a scene of interest includes receiving an original target image of a scene of interest at an image processing device from an image source device, the original target image exhibiting shadowing effects associated with the scene of interest when the original target image was captured, the original target image comprising a plurality of elements and representing an instantaneous state for the scene of interest, pre-processing the original target image using a modification identification algorithm to identify elements of the original target image to be modified, and generating a copy mask with a mask region representing the elements to be modified and a non-mask region representing other elements of the original target image. An image processing device for processing an image of a scene of interest and a non-transitory computer-readable medium are also provided.
Abstract:
Methods and systems for automatically determining the issuing state of a license plate. An image of a license plate acquired by an ALPR engine can be processed via one or more OCR engines such that each OCR engine among the OCR engines is tuned to a particular state. Confidence data output from the OCR engine(s) can be analyzed (among other factors) to estimate the issuing state associated with the license plate. Multiple observations related to the issuing state can be merged to derive an overall conclusion and assign an associated confidence value with respect to the confidence data and determine a likely issuing state associated with the license plate.
Abstract:
Methods, systems, and processor-readable media for data augmentation utilized in an automatic license plate recognition engine. A machine-readable code can be associated with an automatic license plate recognition engine. The machine-readable code can be configured to define parameters that drive processing within the automatic license plate recognition engine to produce recognition results thereof and enhance a machine readability of a license plate recognized and analyzed via the automatic license plate recognition engine.
Abstract:
Methods, systems, and processor-readable media for pruning a training dictionary for use in detecting anomalous events from surveillance video. Training samples can be received, which correspond to normal events. A dictionary can then be constructed, which includes two or more classes of normal events from the training samples. Sparse codes are then generated for selected training samples with respect to the dictionary derived from the two or more classes of normal events. The size of the dictionary can then be reduced by removing redundant dictionary columns from the dictionary via analysis of the sparse codes. The dictionary is then optimized to yield a low reconstruction error and a high-interclass discriminability.
Abstract:
Methods and systems for reducing the required footprint of SNoW-based classifiers via optimization of classifier features. A compression technique involves two training cycles. The first cycle proceeds normally and the classifier weights from this cycle are used to rank the Successive Mean Quantization Transform (SMQT) features using several criteria. The top N (out of 512 features) are then chosen and the training cycle is repeated using only the top N features. It has been found that OCR accuracy is maintained using only 60 out of 512 features leading to an 88% reduction in RAM utilization at runtime. This coupled with a packing of the weights from doubles to single byte integers added a further 8× reduction in RAM footprint or a reduction of 68× over the baseline SNoW method.
Abstract:
A segmentation free method and system for automatic license plate recognition. An OCR classifier can be swept across an image of a license plate. Characters and their locations can be inferred with respect to the image of the license plate using probabilistic inference based on a Hidden Markov Model (HMM). A language model can be combined with a license plate candidate from the HMM to infer the optimal or best license plate code. The language model can be configured by employing a corpus of license plate codes, wherein the corpus includes a distribution representative of training sets and tests sets.