摘要:
The present invention provides a sensor element including two diode elements connected in series to each other, and a capacitive element having one end connected to a junction point between the two diode elements. Each of the diode elements includes a semiconductor layer having a p-type semiconductor region and an n-type semiconductor region facing each other in an in-plane direction, an anode electrode connected to the p-type semiconductor region, a cathode electrode connected to the n-type semiconductor region, a gate insulting film adjoining the semiconductor layer in a stacking direction, and a gate electrode facing the semiconductor layer with the gate insulating film in between.
摘要:
In the case of forming switching elements and light sensor elements over the same substrate, an increase in the film thickness of active layers in an attempt to enhance the sensitivity of the light sensor elements would adversely affect the characteristics of the switching elements (TFTs). In a configuration of a display in which a channel layer 25 for constituting thin film transistors to form the switching elements for pixels and a photoelectric conversion layer 35 for constituting the light sensor elements are provided over a gate insulating film 24 on a glass substrate 5 to be provided with a plurality of pixels arranged in a matrix pattern, the photoelectric conversion layer 35 is formed to be thicker than the channel layer 25, and/or the photoelectric conversion layer 35 is formed of a material different from the material for the channel layer 25, whereby the light absorption coefficient of the photoelectric conversion layer 35 is made to be higher than that of the channel layer 25.
摘要:
In the case of forming switching elements and light sensor elements over the same substrate, an increase in the film thickness of active layers in an attempt to enhance the sensitivity of the light sensor elements would adversely affect the characteristics of the switching elements (TFTs). In a configuration of a display in which a channel layer 25 for constituting thin film transistors to form the switching elements for pixels and a photoelectric conversion layer 35 for constituting the light sensor elements are provided over a gate insulating film 24 on a glass substrate 5 to be provided with a plurality of pixels arranged in a matrix pattern, the photoelectric conversion layer 35 is formed to be thicker than the channel layer 25, and/or the photoelectric conversion layer 35 is formed of a material different from the material for the channel layer 25, whereby the light absorption coefficient of the photoelectric conversion layer 35 is made to be higher than that of the channel layer 25.
摘要:
The present invention provides a sensor element including two diode elements connected in series to each other, and a capacitive element having one end connected to a junction point between the two diode elements. Each of the diode elements includes a semiconductor layer having a p-type semiconductor region and an n-type semiconductor region facing each other in an in-plane direction, an anode electrode connected to the p-type semiconductor region, a cathode electrode connected to the n-type semiconductor region, a gate insulting film adjoining the semiconductor layer in a stacking direction, and a gate electrode facing the semiconductor layer with the gate insulating film in between.
摘要:
Disclosed herein is a memory element, including a parallel combination of a thin film transistor; and a resistance change element, the thin film transistor including a semiconductor thin film in which a channel region, and an input terminal and an output terminal located on both sides of the channel region, respectively, are formed, and a gate electrode overlapping the channel region through an insulating film to become a control terminal, the resistance change element including one conductive layer connected to the input terminal side of the thin film transistor, the other conductive layer connected to the output terminal side of the thin film transistor, and at least one oxide film layer disposed between the one conductive layer and the other conductive layer.
摘要:
Disclosed herein is a memory element, including a parallel combination of a thin film transistor; and a resistance change element, the thin film transistor including a semiconductor thin film in which a channel region, and an input terminal and an output terminal located on both sides of the channel region, respectively, are formed, and a gate electrode overlapping the channel region through an insulating film to become a control terminal, the resistance change element including one conductive layer connected to the input terminal side of the thin film transistor, the other conductive layer connected to the output terminal side of the thin film transistor, and at least one oxide film layer disposed between the one conductive layer and the other conductive layer.
摘要:
Techniques are described for detecting and compensating for characteristic changes of a photoelectric conversion element, such as changes related to the temperature of the photoelectric conversion element. A display device that includes an I/O display panel and a light-receiving drive circuit is disclosed. The I/O display panel includes a plurality of display pixels; and a plurality of photoelectric conversion elements including a first photoelectric conversion element that substantially is shielded from light and a second photoelectric conversion element that is exposed to light. The light-receiving drive circuit receives a first detection signal from the first photoelectric conversion element and resets the second photoelectric conversion element based on the first detection signal.
摘要翻译:描述了用于检测和补偿光电转换元件的特性变化的技术,例如与光电转换元件的温度相关的变化。 公开了一种包括I / O显示面板和光接收驱动电路的显示装置。 I / O显示面板包括多个显示像素; 以及多个光电转换元件,包括基本上被遮光的第一光电转换元件和暴露于光的第二光电转换元件。 光接收驱动电路接收来自第一光电转换元件的第一检测信号,并且基于第一检测信号复位第二光电转换元件。
摘要:
A polycrystalline thin film of good quality is obtained by improving a crystallization process of a semiconductor thin film using laser light. After conducting a film forming step of forming a non-single crystal semiconductor thin film on a surface of a substrate, an annealing step is conducted by irradiating with laser light to convert the non-single crystal semiconductor thin film to a polycrystalline material. The annealing step is conducted by changing and adjusting the cross sectional shape of the laser light to a prescribed region. The semiconductor thin film is irradiated once or more with a pulse of laser light having an emission time width from upstand to downfall of 50 ns or more and having a constant cross sectional area, so as to convert the semiconductor thin film contained in an irradiated region corresponding to the cross sectional area to a polycrystalline material at a time. At this time, the energy intensity of laser light from upstand to downfall is controlled to apply a desired change. According to the procedures, a polycrystalline material having a large particle diameter or a uniform particle diameter can be obtained. In some cases, upon irradiation with laser light, the substrate may be maintained in a non-oxidative atmosphere, or may be heated or cooled.
摘要:
A process of crystallizing a semiconductor thin film previously formed on a substrate by irradiating the semiconductor thin film with a laser beam, includes: a preparation step of dividing the surface of the substrate into a plurality of division regions, and shaping a laser beam to adjust an irradiation region of the laser beam such that one of the division regions is collectively irradiated with one shot of the laser beam; a crystallization step of irradiating one of the division regions with the laser beam while optically modulating the intensity of the laser beam such that a cyclic light-and-dark pattern is projected on the irradiation region, and irradiating the same division region by at least one time after shifting the pattern such that the light and dark portions of the pattern after shifting are not overlapped to those of the pattern before shifting; and a scanning step of shifting the irradiation region of the laser beam to the next division region, and repeating the crystallization step for the division region.
摘要:
A polycrystalline thin film of good quality is obtained by improving a crystallization process of a semiconductor thin film using laser light. After conducting a film forming step of forming a non-single crystal semiconductor thin film on a surface of a substrate, an annealing step is conducted by irradiating with laser light to convert the non-single crystal semiconductor thin film to a polycrystalline material. The annealing step is conducted by changing and adjusting the cross sectional shape of the laser light to a prescribed region. The semiconductor thin film is irradiated once or more with a pulse of laser light having an emission time width from upstand to downfall of 50 ns or more and having a constant cross sectional area, so as to convert the semiconductor thin film contained in an irradiated region corresponding to the cross sectional area to a polycrystalline material at a time. At this time, the energy intensity of laser light from upstand to downfall is controlled to apply a desired change. According to the procedures, a polycrystalline material having a large particle diameter or a uniform particle diameter can be obtained. In some cases, upon irradiation with laser light, the substrate may be maintained in a non-oxidative atmosphere, or may be heated or cooled.