Abstract:
The present disclosure provides an integrated circuit design method in many different embodiments. An exemplary IC design method comprises providing an IC design layout of a circuit in a first technology node; migrating the IC design layout of the circuit to a second technology node; applying an electrical patterning (ePatterning) modification to the migrated IC design layout according to an electrical parameter of the circuit; and thereafter fabricating a mask according to the migrated IC design layout of the circuit in the second technology node.
Abstract:
An intensity selective exposure photomask, also describes as a gradated photomask, is provided. The photomask includes a first region including a first array of sub-resolution features. The first region blocks a first percentage of the incident radiation. The photomask also includes a second region including a second array of sub-resolution features. The second region blocks a second percentage of the incident radiation different that the first percentage. Each of the features of the first and second array includes an opening disposed in an area of attenuating material.
Abstract:
An intensity selective exposure photomask, also describes as a gradated photomask, is provided. The photomask includes a first region including a first array of sub-resolution features. The first region blocks a first percentage of the incident radiation. The photomask also includes a second region including a second array of sub-resolution features. The second region blocks a second percentage of the incident radiation different that the first percentage.
Abstract:
An intensity selective exposure photomask, also describes as a gradated photomask, is provided. The photomask includes a first region including a first array of sub-resolution features. The first region blocks a first percentage of the incident radiation. The photomask also includes a second region including a second array of sub-resolution features. The second region blocks a second percentage of the incident radiation different that the first percentage. Each of the features of the first and second array includes an opening disposed in an area of attenuating material.
Abstract:
The present disclosure provides an integrated circuit method. The method includes providing an integrated circuit (IC) design layout; simulating thermal effect to the IC design layout; simulating electrical performance to the IC design layout based on the simulating thermal effect; and performing thermal dummy insertion to the IC design layout based on the simulating electrical performance.
Abstract:
The present disclosure provides an integrated circuit design method in many different embodiments. An exemplary IC design method comprises providing an IC design layout of a circuit in a first technology node; migrating the IC design layout of the circuit to a second technology node; applying an electrical patterning (ePatterning) modification to the migrated IC design layout according to an electrical parameter of the circuit; and thereafter fabricating a mask according to the migrated IC design layout of the circuit in the second technology node.
Abstract:
A system, method, and computer readable medium for generating a parameterized and characterized pattern library for use in extracting parasitics from an integrated circuit design is provided. In an embodiment, a layout of an interconnect pattern is provided. A process simulation may be performed on the interconnect pattern. In a further embodiment, the interconnect pattern is dissected into a plurality of segments taking into account OPC rules. A parasitic resistance and/or parasitic capacitance associated with the interconnect pattern may be determined by a physical model and/or field solver.
Abstract:
The present disclosure provides a method. The method includes obtaining an integrated circuit (IC) layout. The method includes providing a polishing process simulation model. The method includes performing a lithography pattern check (LPC) process to the IC layout. The LPC process is performed at least in part using the polishing process simulation model. The method includes detecting, in response to the LPC process, possible problem areas on the IC layout. The method includes modifying the polishing process simulation model. The method includes repeating the performing the LPC process and the detecting the possible problem areas using the modified polishing process simulation model.
Abstract:
The present disclosure provides a method. The method includes obtaining an integrated circuit (IC) layout. The method includes providing a polishing process simulation model. The method includes performing a lithography pattern check (LPC) process to the IC layout. The LPC process is performed at least in part using the polishing process simulation model. The method includes detecting, in response to the LPC process, possible problem areas on the IC layout. The method includes modifying the polishing process simulation model. The method includes repeating the performing the LPC process and the detecting the possible problem areas using the modified polishing process simulation model.
Abstract:
The present disclosure provides integrated circuit methods for target-based dummy insertion. A method includes providing an integrated circuit (IC) design layout, and providing a thermal model for simulating thermal effect on the IC design layout, the thermal model including optical simulation and silicon calibration. The method further includes providing a convolution of the thermal model and the IC design layout to generate a thermal image profile of the IC design layout, defining a thermal target for optimizing thermal uniformity across the thermal image profile, comparing the thermal target and the thermal image profile to determine a difference data, and performing thermal dummy insertion to the IC design layout based on the difference data to provide a target-based IC design layout.