Abstract:
The present disclosure provides a semiconductor device. The semiconductor device includes a first conductive line disposed over a substrate. The first conductive line is located in a first interconnect layer and extends along a first direction. The semiconductor device includes a second conductive line and a third conductive line each extending along a second direction different from the first direction. The second and third conductive lines are located in a second interconnect layer that is different from the first interconnect layer. The second and third conductive lines are separated by a gap that is located over or below the first conductive line. The semiconductor device includes a fourth conductive line electrically coupling the second and third conductive lines together. The fourth conductive line is located in a third interconnect layer that is different from the first interconnect layer and the second interconnect layer.
Abstract:
Integrated circuit (IC) methods for optical proximity correction (OPC) modeling and mask repair are described. The methods include use of an optical model that generates a simulated aerial image from an actual aerial image obtained in an optical microscope system. In the OPC modeling methods, OPC according to stage modeling is simulated, and OPC features may be added to a design layout according to the simulating OPC. In the mask repair methods, inverse image rendering is performed on the actual aerial image and diffraction image by applying an optical model that divides an incoherent exposure source into a plurality of coherent sources.
Abstract:
A microscope apparatus includes a condenser lens to make an illuminating electromagnetic wave relatively homogeneous, a first beam splitter splitting the illuminating electromagnetic wave after the condenser lens, a movable reflector module, a second beam splitter, an objective lens to project the illuminating electromagnetic wave propagating after an object to be observed toward an observing device. The object is loaded between the first beam splitter and the second beam splitter. The microscope apparatus is configured to split the illuminating electromagnetic wave into two paths at the first beam splitter. A first path goes through the first and the second beam splitters, and a second path goes through the movable reflector module to rejoin the first path at the second beam splitter. The microscope apparatus is configured acquire phase images with interferences of the electromagnetic wave from the two paths with at least two distance settings of the movable reflector module.
Abstract:
An intensity selective exposure photomask, also describes as a gradated photomask, is provided. The photomask includes a first region including a first array of sub-resolution features. The first region blocks a first percentage of the incident radiation. The photomask also includes a second region including a second array of sub-resolution features. The second region blocks a second percentage of the incident radiation different that the first percentage.
Abstract:
The present disclosure provides one embodiment of an integrated circuit (IC) design method. The method includes receiving an IC design layout having a plurality of main features; applying a main feature dissection to the main features of the IC design layout and generating sub-portions of the main features; performing an optical proximity correction (OPC) to the main features; performing a mask rule check (MRC) to a main feature of the IC design layout; and modifying one of the sub-portions of the main feature if the main feature fails the MRC.
Abstract:
A microscope apparatus includes a condenser lens to make an illuminating electromagnetic wave relatively homogeneous, a first beam splitter splitting the illuminating electromagnetic wave after the condenser lens, a movable reflector module, a second beam splitter, an objective lens to project the illuminating electromagnetic wave propagating after an object to be observed toward an observing device. The object is loaded between the first beam splitter and the second beam splitter. The microscope apparatus is configured to split the illuminating electromagnetic wave into two paths at the first beam splitter. A first path goes through the first and the second beam splitters, and a second path goes through the movable reflector module to rejoin the first path at the second beam splitter. The microscope apparatus is configured acquire phase images with interferences of the electromagnetic wave from the two paths with at least two distance settings of the movable reflector module.
Abstract:
The present disclosure describes an OPC method of preparing data for forming a mask. The method includes setting a plurality of dissection points at the main feature and further includes setting a target point at the main feature. The method includes arranging the two dissection points crossing the main feature symmetrically each other. The method includes separating two adjacent dissection points at one side of the main feature by a maximum resolution of the mask writer. The method includes dividing the main feature into a plurality of segments using the dissection points. The method includes performing an OPC convergence simulation to a target point. The method includes correcting the segments belonging to an ambit of the target point and further includes correcting the segment shared by two ambits.
Abstract:
An intensity selective exposure photomask, also describes as a gradated photomask, is provided. The photomask includes a first region including a first array of sub-resolution features. The first region blocks a first percentage of the incident radiation. The photomask also includes a second region including a second array of sub-resolution features. The second region blocks a second percentage of the incident radiation different that the first percentage. Each of the features of the first and second array includes an opening disposed in an area of attenuating material.
Abstract:
A method for performing OPC and evaluating OPC solutions is disclosed. An exemplary method includes receiving a design database corresponding to an IC circuit mask. A first lithography simulation and evaluation is performed on the design database utilizing a first set of performance indexes. A modification is made to the design database based on a result of performing the first lithography simulation and evaluation. A second lithography simulation and evaluation is performed on the design database utilizing a second set of performance indexes to verify the modification. If necessary, the design database is modified again based on a result of the second lithography simulation and evaluation. The modified design database is provided to a mask manufacturer for manufacturing the mask corresponding to the modified design database.
Abstract:
Integrated circuit (IC) methods for optical proximity correction (OPC) modeling and mask repair are described. The methods include use of an optical model that generates a simulated aerial image from an actual aerial image obtained in an optical microscope system. In the OPC modeling methods, OPC according to stage modeling is simulated, and OPC features may be added to a design layout according to the simulating OPC. In the mask repair methods, inverse image rendering is performed on the actual aerial image and diffraction image by applying an optical model that divides an incoherent exposure source into a plurality of coherent sources.