Abstract:
A pen voltage regulator is provided for supplying a regulated pen voltage to one or more printheads of an inkjet printer. The pen voltage regulator includes: a regulator switch arranged between an input terminal and an output terminal; a linear lifting circuit connected to the regulator switch; a soft start circuit arranged between the regulator switch and the output terminal; an output filter arranged between the soft start circuit and the output terminal; and a pulse width modulation (PWM) controller connected to the linear filtering circuit. The PWM controller is arranged to provide a pulse width modulated control signal to the linear filtering circuit. The linear filtering circuit is configured to transmit a smoothed control signal to the regulator switch and to ensure that the regulator switch is operable in a linear region. The soft start circuit is configured to provide a soft-start mode of operation so as to prevent the generation of large inrush currents and to provide overload protection.
Abstract:
A vending machine capable of refilling used ink cartridges as well as dispensing filled ink cartridges is closed. The vending machine includes at least one cartridge receptacle for receiving an ink cartridge, a user interface, a display unit, a nozzle health check module, a printhead servicing module, an ink reservoir, an ink refilling unit, a compartment containing new ink cartridges, a compartment containing filled, second-hand ink cartridges, and a recycle compartment for receiving discarded ink cartridges. The user is presented by the display unit with the option of (a) refilling a used cartridge, (b) purchasing a filled cartridge, or (c) returning a used cartridge in exchange for a purchase rebate or a discount voucher. When the user selects the option of refilling, the vending machine executes a refilling subroutine which includes checking the nozzle health.
Abstract:
One aspect of the present invention includes method of making a photovoltaic device. The method includes disposing an absorber layer on a window layer, wherein the absorber layer includes a first region and a second region. The method includes disposing the first region adjacent to the window layer in a first environment including oxygen at a first partial pressure; and disposing the second region on the first region in a second environment including oxygen at a second partial pressure, wherein the first partial pressure is greater than the second partial pressure. One aspect of the present invention includes a photovoltaic device.
Abstract:
Techniques for improving linearity of amplifiers are described. In an exemplary design, an amplifier (e.g., a power amplifier) may include a plurality of transistors coupled in a stack and at least one diode. The plurality of transistors may receive and amplify an input signal and provide an output signal. The at least one diode may be operatively coupled to at least one transistor in the stack. Each diode may provide a variable bias voltage to an associated transistor in the stack. Each diode may have a lower voltage drop across the diode at high input power and may provide a higher bias voltage to the associated transistor at high input power. The at least one transistor may have higher gain at high input power due to the higher bias voltage from the at least one diode. The higher gain may improve the linearity of the amplifier.
Abstract:
A wireless device with power amplifiers having different characteristics to support transmission on multiple antennas is disclosed. These power amplifiers may have different gain, different maximum output power levels, etc. in order to meet requirements of different wireless systems. In an exemplary design, an apparatus includes first and second power amplifiers having different characteristics. The first power amplifier amplifies a first input signal and provides a first output signal for a first antenna. The second power amplifier amplifies the first input signal or a second input signal and provides a second output signal for a second antenna, e.g., in a MIMO mode or a transmit diversity mode. Only the first or second power amplifier amplifies another input signal and provides another output signal to the first antenna, e.g., in a CDMA mode or a GSM mode.
Abstract:
Exemplary techniques for performing impedance matching are described. In an exemplary embodiment, the apparatus may include an amplifier (e.g., a power amplifier) coupled to first and second matching circuits. The first matching circuit may include multiple stages coupled to a first node and may provide input impedance matching for the amplifier. The second matching circuit may include multiple stages coupled to a second node and may provide output impedance matching for the amplifier. At least one switch may be coupled between the first and second nodes and may bypass or select the amplifier. The first and second nodes may have a common impedance. The apparatus may further include a second amplifier coupled in parallel with the amplifier and further to the matching circuits. The second matching circuit may include a first input stage coupled to the amplifier, a second input stage coupled to the second amplifier, and a second stage coupled to the two input stages via switches.
Abstract:
A printer includes an energy storage device and a charger for charging the energy storage device and for providing a first DC voltage. The printer includes a first DC-to-DC voltage converter for converting the first DC voltage to a second DC voltage. The printer includes first printer electronics powered by the second DC voltage.
Abstract:
An apparatus for sequential deposition of an intermixed thin film layer and a sublimated source material on a photovoltaic (PV) module substrate is provided, along with associated processes. The process can include introducing a substrate into a deposition chamber, wherein a window layer (e.g., a cadmium sulfide layer) is on a surface of the substrate. A sulfur-containing gas can be supplied to the deposition chamber. In addition, a source vapor can be supplied to the deposition chamber, wherein the source material comprises cadmium telluride. The sulfur-containing gas and the source vapor can be present within the deposition chamber to form an intermixed layer on the window layer. In one particular embodiment, for example, the intermixed layer generally can have an increasing tellurium concentration and decreasing sulfur concentration extending away from the window layer.