摘要:
A light emitting device with an increased light extraction efficiency includes a two-dimensional periodic structure in a surface thereof and has two layers that together form an asymmetric refractive index distribution with respect to the active layer, which is in between the two layers. The light emitting device includes a substrate layer, a first layer, an active layer and a second layer that are stacked sequentially. The first layer includes at least one layer, including a semiconductor cladding layer of a first conductivity type. At least one layer of the first layer has a refractive index that is lower than a refractive index of the active layer and lower than a refractive index of a layer of the second layer that is adjacent to the active layer. Each constituent layer of the second layer has a refractive index that is lower than the refractive index of the active layer.
摘要:
An X-ray image acquiring system capable of improving the detection accuracy of a foreign substance contained in a subject is provided. An X-ray image acquiring system 1 irradiates X-rays to a subject S having a predetermined thickness W from an X-ray source, and detects X-rays transmitted through the subject S in a plurality of energy ranges. The X-ray image acquiring system 1 includes a low-energy detector 32 for detecting, in a low-energy range, X-rays having been transmitted through a region R1 extending in a thickness direction within the subject S, a high-energy detector 42 for detecting, in a high-energy range, X-rays having been transmitted through a region R2 extending in a thickness direction within the subject S, and a timing control section 50 for controlling detection timing of X-rays in the low-energy detector 32 and the high-energy detector 42 so that an inspecting region E located at a predetermined site within the subject S is included in the region R1 and the region R2.
摘要:
A radiation image acquiring system that improves the detection accuracy of a foreign substance etc., in a subject is provided. An X-ray image acquiring system 1 irradiates X-rays to a subject S from an X-ray source, and detects X-rays in a plurality of energy ranges transmitted through the subject S. The X-ray image acquiring system 1 includes a low-energy detector 32 for detecting X-rays in a low-energy range that is transmitted through the subject S to generate low-energy image data, a high-energy detector 42 arranged in parallel to the low-energy detector 32 with a dead zone region 82 sandwiched therebetween, for detecting X-rays in a high-energy range that is transmitted through the subject S to generate high-energy image data, and a timing control section 50 for controlling detection timing of the high-energy detector 42 based on a dead zone width NW of the dead zone region 82 so that low-energy image data to be generated by the low-energy detector 32 and high-energy image data to be generated by the high-energy detector 42 mutually correspond.
摘要:
A LED chip having first and second electrodes on opposite principal surfaces, is bonded to a substrate through a composite bonding layer. The composite bonding layer is formed when a support substrate including the substrate and a first bonding layer is bonded to a lamination structure including the LED, the first electrode and a second bonding layer. The first or second bonding layer contains at least part of eutectic composition. At least one of the support substrate and the lamination structure includes a diffusion material layer. The composite bonding layer is formed in such a manner that eutectic material contents are mixed with the other to form a first mixture, and that the first mixture is mixed with diffusion material to form a second mixture having a melting point higher than a melting point of the first mixture.
摘要:
A ball-up preventive layer is formed on a first substrate. A bonding layer made of eutectic material is formed on the ball-up preventive layer. A semiconductor light emitting structure is formed on a second substrate. A first electrode is formed at least partially on the semiconductor light emitting structure. A barrier layer is formed on the first electrode. A metal layer is formed on the barrier layer. The bonding layer and the metal layer are bonded together. The second substrate is removed from the bonded structure. A second electrode is formed on a partial surface area of the semiconductor light emitting structure exposed on a surface of the bonded structure to obtain a semiconductor light emitting device.
摘要:
In response to the movement of a moving contact which can move with small force for a large distance until it contacts a stationary contact and requires large force to move for a small distance after the contacting, three cam means including a toggle roller and a toggle cam, a coupling shaft roller and a closing cam, and a closing cam and an operation lever roller, respectively are provided to effectively distribute the closing force of a closing spring.
摘要:
An X-ray image acquiring system capable of improving the detection accuracy of a foreign substance contained in a subject is provided. An X-ray image acquiring system irradiates X-rays to a subject having a predetermined thickness from an X-ray source, and detects X-rays transmitted through the subject in a plurality of energy ranges. The X-ray image acquiring system includes a low-energy detector for detecting, in a low-energy range, X-rays having been transmitted through a region R1 extending in a thickness direction within the subject, a high-energy detector for detecting, in a high-energy range, X-rays having been transmitted through a region R2 extending in a thickness direction within the subject, and a timing control section for controlling detection timing of X-rays in the low-energy detector and the high-energy detector so that an inspecting region located at a predetermined site within the subject is included in the region R1 and the region R2.
摘要:
An X-ray image acquiring system capable of improving the detection accuracy of a foreign substance contained in a subject is provided. An X-ray image acquiring system 1 irradiates X-rays to a subject S having a predetermined thickness W from an X-ray source, and detects X-rays transmitted through the subject S in a plurality of energy ranges. The X-ray image acquiring system 1 includes a low-energy detector 32 for detecting, in a low-energy range, X-rays having been transmitted through a region R1 extending in a thickness direction within the subject S, a high-energy detector 42 for detecting, in a high-energy range, X-rays having been transmitted through a region R2 extending in a thickness direction within the subject S, and a timing control section 50 for controlling detection timing of X-rays in the low-energy detector 32 and the high-energy detector 42 so that an inspecting region E located at a predetermined site within the subject S is included in the region R1 and the region R2.
摘要:
A ball-up preventive layer is formed on a first substrate. A bonding layer made of eutectic material is formed on the ball-up preventive layer. A semiconductor light emitting structure is formed on a second substrate. A first electrode is formed at least partially on the semiconductor light emitting structure. A barrier layer is formed on the first electrode. A metal layer is formed on the barrier layer. The bonding layer and the metal layer are bonded together. The second substrate is removed from the bonded structure. A second electrode is formed on a partial surface area of the semiconductor light emitting structure exposed on a surface of the bonded structure to obtain a semiconductor light emitting device.
摘要:
A ball-up preventive layer is formed on a first substrate. A bonding layer made of eutectic material is formed on the ball-up preventive layer. A semiconductor light emitting structure is formed on a second substrate. A first electrode is formed at least partially on the semiconductor light emitting structure. A barrier layer is formed on the first electrode. A metal layer is formed on the barrier layer. The bonding layer and the metal layer are bonded together. The second substrate is removed from the bonded structure. A second electrode is formed on a partial surface area of the semiconductor light emitting structure exposed on a surface of the bonded structure to obtain a semiconductor light emitting device.