Abstract:
A computer-based method and system for teaching educational sketching includes receiving a user-generated image created in response to a learning assignment and comparing the user-generated image to a solution image to identify one or more errors in the user-generated image relative to the solution image, where the errors may include additional image elements and missing image elements. Comparing is performed by providing a solution region corresponding to an acceptable variation from the solution image and identifying one or more errors based on a presence or absence of at least a portion of a corresponding element of the user-generated image within the solution region. If errors are identified and a non-passing status is determined, a hint is displayed to the user. The hint may be the correct elements of the user-generated image, a portion of the solution image, or a combination thereof.
Abstract:
The present inventors have recognized that proper utilization of reconfigurable event driven hardware may achieve optimum power conservation in energy constrained environments including a low power general purpose primary processor and one or more electronic sensors. Aspects of neurobiology and neuroscience, for example, may be utilized to provide such reconfigurable event driven hardware, thereby achieving energy-efficient continuous sensing and signature reporting in conjunction with the one or more electronic sensors while the primary processor enters a low power consumption mode. Such hardware is event driven and operates with extremely low energy requirements.
Abstract:
A method for analyzing porosity of a particle and a medium disposed in the porosity of the particle. A video-holographic microscope is provided to analyze interference patterns produced by providing a laser source to output a collimated beam, scattering the collimated beam off a particle and interacting with an unscattered beam to generate the interference pattern for analyzation to determine the refractive index of the particle and a medium disposed in the porosity of the particle to measure porosity and the medium.
Abstract:
The invention relates to hardware decoders that efficiently expand a small number of input bits to a large number of output bits, while providing considerable flexibility in selecting the output instances. One main area of application of the invention is in pin-limited environments, such as field programmable gates array (FPGA) used with dynamic reconfiguration. The invention includes a mapping unit that is a circuit, possibly in combination with a reconfigurable memory device. The circuit has as input a z-bit source word having a value at each bit position and it outputs an n-bit output word, where n>z, where the value of each bit position of the n-bit output word is based upon the value of a pre-selected hardwired one of the bit positions in the x-bit word, where the said pre-selected hardwired bit positions is selected by a selector address. The invention may include a second reconfigurable memory device that outputs the z-bit source word, based upon an x-bit source address input to the second memory device, where x
Abstract:
An algorithm is disclosed for constructing nonlinear models from high-dimensional scattered data. The algorithm progresses iteratively adding a new basis function at each step to refine the model. The placement of the basis functions is driven by a statistical hypothesis test that reveals geometric structure when it fails. At each step the added function is fit to data contained in a spatio-temporally defined local region to determine the parameters, in particular, the scale of the local model. The proposed method requires no ad hoc parameters. Thus, the number of basis functions required for an accurate fit is determined automatically by the algorithm. The approach may be applied to problems including modeling data on manifolds and the prediction of financial time-series. The algorithm is presented in the context of radial basis functions but in principle can be employed with other methods for function approximation such as multi-layer perceptrons.
Abstract:
Methods of treating an injured vertebrate spinal cord are described. In one aspect of the invention, a method of treating an injured vertebrate spinal cord includes contacting the spinal cord with a biomembrane fusion agent such as a polyalkylene glycol, especially polyethylene glycol. In alternative embodiments of the invention, methods of treating an injured vertebrate spinal cord include contacting the cord with a biomembrane fusion agent and a potassium channel blocker. Other aspects of the invention include compositions for treating a vertebrate nervous system. A preferred composition includes a biomembrane fusion agent, such as a polyalkylene glycol, and a potassium channel blocker, such as an amino-substituted pyridine.
Abstract:
An apparatus and method for manipulating small dielectric particles. The apparatus and method involves use of a diffractive optical element which receives a laser beam and forms a plurality of light beams. These light beams are operated on by a telescope lens system and then an objective lens element to create an array of optical traps for manipulating small dielectric particles.
Abstract:
A high flux and low pressure drop microfiltration (MF) membrane and a method for making the MF membrane. The microfiltration membranes are formed by a method that includes: preparing a nanofibrous structure; and modifying the surface of the nanofibrous structure with a surface modifier. The nanofibrous structure includes an electrospun nanofibrous scaffold or a polysaccharide nanofiber infused nanoscaffold or mixtures thereof. The electrospun nanofibrous scaffold can include polyacrylonitrile (PAN) or polyethersulfone (PES))/polyethylene terephthalate (PET) or mixtures thereof. The surface modifier includes polyethylenimine (PEI) and polyvinyl amine (Lupamin) cross-linked by ethylene glycol diglycidyl ether (EGdGE)/glycidyltrimethylammonium chloride (GTMACl) or poly(1-(1-vinylimidazolium)ethyl-3-vinylimdazolium dibromide (VEVIMIBr).
Abstract:
The inventors have recognized that in RF communication systems, by switching between transmit antennas of an RF transmitter on a sub-symbol basis (antenna index coding), and/or by adaptively determining how often antenna switching occurs (adaptive antenna hopping), an increased amount of data may be wirelessly transmitted to an RF receiver without significantly increasing energy consumption. The inventors have determined that in certain systems, such as ZigBee, data symbols consist of elementary waveform patterns, and that such waveform patterns for transmit antennas may be stored by an RF receiver for later determining transmit antennas for data symbols. The inventors have also determined that the invention may be applied in the frequency domain, such as to OFDM, by storing subcarrier waveform patterns for particular transmit antennas and later determining transmit antennas for subcarriers of data symbols.