Abstract:
An input system includes a first gesture detection unit and a second gesture detection unit. The first gesture detection unit includes a first light emitting device for emitting a first light beam, a first light sensing device for receiving the first light beam reflected by a first motion trajectory generated by a user and outputting a first image signal, and a first processing unit for processing the first image signal and outputting a first command signal. The second gesture detection unit includes a second light emitting device for emitting a second light beam, a second light sensing device for receiving the second light beam reflected by a second motion trajectory generated by the user and outputting a second image signal, and a second processing unit for processing the second image signal and outputting a second command signal.
Abstract:
The invention provides a MEMS device with enhanced structural strength. The MEMS device includes a plurality of metal layers, including a top metal layer with a plurality of metal segments. The metal segments are individually connected to an adjacent metal layer immediately under the top metal layer through at least one supporting pillar, and there is no dielectric layer between the metal segments and the adjacent metal layer immediately under the top metal layer. The metal layers except the top metal layer are respectively connected to their adjacent metal layers through at least one supporting pillar and a dielectric layer filling in between.
Abstract:
The present invention discloses a gesture recognition apparatus including a substrate, a light emitting device, an image sensor and a processing unit. The light emitting device is for emitting a light beam according to a first clock signal. The image sensor is disposed on the substrate and is for receiving the light beam reflected by an object according to a second clock signal to generate an object image. The processing unit is disposed on the substrate and is for recognizing the object image detected by the image sensor to provide a command signal. There is a correlation between a period of the first clock signal and a period of the second clock signal. The present invention also provides a complex optical apparatus.
Abstract:
The present invention discloses a MEMS microphone device and its manufacturing method. The MEMS microphone device includes: a substrate including a first cavity; a MEMS device region above the substrate, wherein the MEMS device region includes a metal layer, a via layer, an insulating material region and a second cavity; a mask layer above the MEMS device region; a first lid having at least one opening communicating with the second cavity, the first lid being fixed above the mask layer; and a second lid fixed under the substrate.
Abstract:
A chip package includes: a semiconductor chip having an upper surface and a lower surface opposite to each other, the semiconductor chip including an image sensor circuit; a metal heat conductive layer formed on the lower surface, for conducting or absorbing heat generated by the semiconductor chip; a bond pad formed on the upper surface, for electrically connecting with the image sensor circuit in the semiconductor chip, wherein the metal heat conductive layer conducts or absorbs heat generated by the semiconductor chip, to thereby reduce temperature of the image sensor circuit in the semiconductor chip and improve the performance of the circuit, wherein the metal heat conductive layer entirely covers the lower surface.
Abstract:
The present invention discloses a sensor device with dark current compensation and control method thereof. The sensor device includes: a sensor circuit, for sensing a physical property or a chemical property to generate an analog sensing signal; a dark current compensation circuit, which is coupled to the sensor circuit, for processing the analog sensing signal and generating an analog compensated signal according to a reference signal; and a convertor circuit, which is coupled to the dark current compensation circuit, for generating a digital sensing signal according to the analog compensated signal.
Abstract:
An optoelectronic device includes: a substrate made of a first material; a region in the substrate, the region being made of a second material different from the first material; an N-well in the region made of the second material; and a photo diode formed in the region by ion implantation. The second material for example is silicon germanium (Si1-xGex) or silicon carbide (Si1-yCy) wherein 0
Abstract:
The present invention discloses a gesture recognition apparatus including a substrate, a light emitting device, an image sensor and a processing unit. The light emitting device is for emitting a light beam according to a first clock signal. The image sensor is disposed on the substrate and is for receiving the light beam reflected by an object according to a second clock signal to generate an object image. The processing unit is disposed on the substrate and is for recognizing the object image detected by the image sensor to provide a command signal. There is a correlation between a period of the first clock signal and a period of the second clock signal. The present invention also provides a complex optical apparatus.
Abstract:
The present invention discloses a method and apparatus for controlling an object movement on a screen. The method senses a first change in a position of a pointing device in a coordinate system to obtain a first displacement, and controls the object movement by a first displacement output ratio according to the first displacement. The method senses a second change in a position of the pointing device in a coordinate system to obtain a second displacement, and controls the object movement by a second displacement output ratio when a difference between a direction of the first displacement and a direction of the second displacement exceeds a first angle threshold, wherein the second displacement output ratio is lower than the first displacement output ratio.
Abstract:
The invention provides an ambient light sensing device and an ambient light sensing method. The ambient light sensing device includes at least one pixel, a read out circuit, and a combination unit. The invention detects ambient light to obtain plural lower resolution exposure values corresponding to different dynamic ranges respectively, and combines the plural lower resolution exposure values to generate a higher resolution code combination, indicating the result of ambient light detection.