Abstract:
A sensing system includes an electronic tag and a reading device that transmits and receives information to and from the electronic tag. The reading device includes a transmission unit that sends an alternating-current radio wave including a high-frequency component and a low-frequency component. The electronic tag does not include a power supply and includes a receiving unit that obtains a power supply voltage from the high-frequency component of the alternating-current radio wave and obtains a clock signal from the low-frequency component and a return unit that maintains a maximum amplitude of the clock signal and sends a combination of information and the clock signal as a return signal. The reading device further includes a processing unit that decodes the return signal sent from the electronic tag on the basis of the clock signal.
Abstract:
A sensing system includes an electronic tag and a reading device that transmits and receives information to and from the electronic tag. The reading device includes a transmission unit that sends an alternating-current radio wave including a high-frequency component and a low-frequency component. The electronic tag does not include a power supply and includes a receiving unit that obtains a power supply voltage from the high-frequency component of the alternating-current radio wave and obtains a clock signal from the low-frequency component and a return unit that maintains a maximum amplitude of the clock signal and sends a combination of information and the clock signal as a return signal. The reading device further includes a processing unit that decodes the return signal sent from the electronic tag on the basis of the clock signal.
Abstract:
A refrigerant pack is provided with a refrigerant substance containing water, a precipitating component, a non-precipitating component, and a pH indicator, and is configured such that the precipitating component precipitates when the refrigerant substance freezes and is a component not corresponding to the pH indicator, the non-precipitating component does not precipitate when the refrigerant substance freezes and is a component not corresponding to the pH indicator, a change or the presence/absence of coloring in the pH indicator is reflected before and after freezing, and the refrigerant substance changes in color.
Abstract:
A silver ink composition Which includes a silver carboxylate having a group represented by a formula iCOOAg, an aliphatic primary amine or secondary amine having 2 to 10 carbon atoms, an acetylene alcohol represented by a general formula (2) shown below, and a hydrocarbon having 6 to 20 carbon atoms, and has a viscosity at 27° C. of 40 mPa-s or less, in the formula, each of R′ and R″ independently represents an alkyl group having 1 to 20 carbon atoms or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
Abstract:
There are provided a silver ink composition which is capable of forming metallic silver having sufficient electrical conductivity without carrying out a heat treatment at high temperatures; and a conductor and communication device which are obtained using this silver ink composition. Such a silver ink composition is characterized by being obtained by blending: a silver carboxylate having a group represented by a formula “—COOAg”; one or more nitrogen-containing compounds selected from the group consisting of amine compounds and quaternary ammonium salts of not more than 25 carbon atoms, ammonia, and ammonium salts obtained by reacting the above amine compounds or ammonia with an acid; and one or more reducing compounds selected from the group consisting of oxalic acid, hydrazine and compounds represented by a general formula (5) shown below (in the formula, R21 represents an alkyl group, alkoxy group or N,N-dialkylamino group of not more than 20 carbon atoms, a hydroxyl group or an amino group): or obtained by preparing a second mixture by supplying carbon dioxide to a first mixture formed by mixing a silver carboxylate having a group represented by a formula “—COOAg” and one or more nitrogen-containing compounds selected from the group consisting of amine compounds and quaternary ammonium salts of not more than 25 carbon atoms, ammonia, and ammonium salts obtained by reacting the amine compounds or ammonia with an acid; and further mixing one or more reducing compounds selected from the group consisting of oxalic acid, hydrazine and compounds represented by a general formula (5) shown below to the mixture: H—C(═O)—R21 (5).
Abstract:
Sheet-like audio information recording/reproducing means capable of recording/reproducing audio information is sandwiched between two support sheets from front and back only in part of the area thereof and these two support sheets are further sandwiched between two surface sheets and the support sheets and surface sheets are bonded together.
Abstract:
There is provided a photosetting conductive paste that has a surface resistance of no greater than 200 m.OMEGA./sq. upon curing by light irradiation. The photosetting conductive paste comprises conductive powder and a photosetting resin composition in specific amounts. The conductive powder contains dendritic conductive powder and scaly conductive powder at 80% or greater of the total conductive powder, the dendritic conductive powder having a mean particle size of 0.05-1.0 .mu.m, a specific surface area of 0.5-5.0 m.sup.2 /g, and the scaly conductive powder having a mean particle size of 1.0-10.0 .mu.m and a specific surface area of 0.5-5.0 m.sup.2 /g, wherein the weight ratio of the dendritic conductive powder and scaly conductive powder is 6/40-95/5. There is also provided a method of forming an antenna for a radio frequency identification medium that comprises printing the conductive paste on a substrate in an antenna-shaped pattern and curing it.
Abstract:
A wiring board includes: thin silver wires formed on a substrate by a printing method, in which the thin silver wires are configured so that the width thereof in a cross-section in a direction perpendicular to a wire length direction thereof is 20 μm or less, a top thereof has a smaller width than that of a contact portion that comes into contact with the substrate, and a volume resistivity of the thin silver wire is 15 μΩ·cm or less.
Abstract:
A non-contact data receiving/transmitting body is provided which includes an IC chip, a first antenna to which the IC chip is connected, and a second antenna for use as a booster that resonates with the first antenna in a non-contact manner. The first antenna is a ring-shaped antenna having at least three straight portions. The second antenna has a central portion that is bent such that parts of the central portion extend respectively along the three straight portions of the first antenna and are at an angle equal to or greater than 90° to each other. The IC chip is provided on the three straight portions of the first antenna and is connected to the first antenna at the straight portions.