Abstract:
In the present invention, a technique is described for manufacturing microtube devices which have peripheral geometries that are not uniform along the tube or device axis. These geometries may exist in only one location on the periphery of the microtube device or geometries may be repeated either uniformly or non-uniformly with micron or sub-micron precision along the tube or device axis. The preferred manufacturing process involves forming a complex mandrel, ie., (one, for example, that can not be formed by extrusion or pultrusion under constant processing conditions) and giving it at least one metallic and/or nonmetallic coating by any of a variety of techniques. The complex mandrel can then be removed by appropriate chemical or physical means that do not adversely affect the coating(s) desired for the wall. The result is a microtube structure having an axial profile duplicating that on the mandrel from which it was formed.
Abstract:
A fiber reinforced thermoplastic pipe member is obtained by a novel continuous process in which the reinforcement fibers are wrapped about the outer pipe surface in an unbonded condition while the pipe member continuously moves in a linear direction and which is followed by sufficient heating of the moving fiber wrapped pipe member to cause thermal bonding between the applied fibers and the pipe member. Automated apparatus for carrying out the continuous process is also disclosed.
Abstract:
A method of manufacturing paint rollers includes the steps of extruding a cylindrical plastic core through a rotating extruder head, and securing an absorbent sheet material onto an outer surface of the core in a continuous process.
Abstract:
A reinforced composite vessel and a method for its manufacture. A cylindrical mandrel capped by two convex, cylindrically symmetrical caps is supported externally only at a proximal end thereof, and is rotated and translated with respect to a strand delivery system to wrap the mandrel with at least two strands, in multiple strokes. A mechanism is provided to ensure that the strands are laid flat and undamaged onto the mandrel. As the caps pass the strand delivery system, the strands overlap and anchor each other. A liquid binder is mixed intimately with a catalyst and is depressurized to release dissolved gases. The binder is applied to the wrapped mandrel by causing a quantity of the binder sufficient to coat the mandrel to surround one end of the mandrel and then move towards the other end as an advancing annulus. This is accomplished by placing the mandrel vertically in a coating chamber along with the volume of binder, and reducing the volume of the chamber to force the binder up past the mandrel.
Abstract:
A method and apparatus for making a paint roller cover by spirally wrapping a strip of hot extruded thermoplastic film onto an exterior surface of hollow thermoplastic tubing and spirally wrapping a strip of fabric having a thermoplastic backing onto the spiral wound strip of thermoplastic film while the thermoplastic film is still sufficiently hot to cause the thermoplastic film to flow into interstices in the thermoplastic backing of the fabric and permanently bond the fabric to the exterior surface of the tubing. The fabric covered tubing is then cooled and separated into a plurality of individual lengths of fabric covered tubes.
Abstract:
In a winding method of a sheet member for winding a sheet member having an inclined side portion 7a inclined with respect to a longitudinal direction at least on one side in the longitudinal direction around a winding cylinder 50 in more than one turn from a tip end of the inclined side portion 7a as a winding start tip, winding of the sheet member is started in a small-diameter portion 51a of the winding cylinder 50 to which a radial difference is given by providing a step 54 to make a diameter smaller on one side in an axial direction and larger on the other side in the axial direction.
Abstract:
To produce a flexible pipe body, a length of tensile armour element (300) of pre-preg composite material is fed towards a fluid-retaining layer (602). The tensile armour element (300) passes through a guide (604) an a pre-heater (606). The tensile armour element (300) is then applied to the fluid-retaining layer (602), being wrapped around the fluid-etaining layer (602) by virtue of the rotation of the layer (602), the linear translation of the layer (602), and the fixed position of the tensile armour element feed (601). The element (300) is fed to the fluid-retaining layer under a constant, predetermined controlled tension. Positioning head (608) helps to position the element (300) on the fluid-retaining layer (602). As tensile armour element is wound onto the pipe body, the pipe body continues to move in a, linear direction and the pipe body moves through an oven (610).