Abstract:
A composite pipe including an internal liner and at least one external layer made of a fiber reinforced consolidated thermoplastic material. A heat-resistant material mechanically separates the liner from the at least one external thermoplastic layer. The heat-resistant material forms a non-bonding barrier that is non-bonded to at least one of liner and the adjacent at least one thermoplastic layer. A method and an assembly for producing the composite pipe.
Abstract:
The invention relates to a method of fabricating a composite material part in which one or more layers of braided, or woven, or indeed draped reinforcing fibers are applied onto a mandrel having the general shape of a body of revolution. After one or more layers have been applied onto the mandrel, an operation is performed of winding at least one tie helically around and along the assembly constituted by the mandrel and each layer of reinforcing fibers that it carries, so as to press each layer of reinforcing fibers against the mandrel. The invention relates to fabricating composite material parts such as beams, connecting rods, or arms made out of carbon fibers.
Abstract:
Method of producing spring wires shaped as a cylinder. The wire includes at least one first plurality of layers of wound fibres, the layers being disposed on top of one another and impregnated with a matrix. The first plurality of layers includes at least two stacked layers of fibres which are wound in opposing directions along two coaxial helices around the same axis to the left and right thereof respectively. The tangents to the two helices together with the axis (10) form respectively two angles having values βx-1 and βx which are respectively equal to Δ+kγ and −Δ− kγ, γ being a function of the value of the modulus of elasticity for the spring to be produced and k being a factor of between 0 and 1. The method is suitable for the production of helical cylindrical-type spring wires for the suspension systems of motor vehicles.
Abstract:
An aircraft part manufacturing device for automated composite lamination on a mandrel surface of a tool having a rotational axis includes a mechanical supporting structure that supports multiple material delivery heads. The tool is moveable and rotatable relative to the mechanical supporting structure. The mechanical supporting structure provides for axial translation of the material delivery heads relative to the mandrel surface while the mandrel surface is rotated for laying down courses of composite material over the entire mandrel surface of the tool. The position and movement of each of the plurality of material delivery heads is individually adjustable. Arm mechanisms provide motion of each material delivery head in a direction normal to the mandrel surface; rotation about an axis normal to the mandrel surface; circumferential position adjustment in a hoop direction relative to the mandrel surface; and axial position adjustment relative to the other material delivery heads.
Abstract:
A fluid storage tank made of a plurality of steel plates welded together is reinforced by winding a plurality of continuous, high tensile strength, non-metallic filaments around and in contact with the plates and applying a resin to the filaments to define a composite material of the filaments in a resin matrix. In one embodiment, substantially the entire exterior surface of the shell is covered by the composite material to form a reinforcing jacket. In another embodiment, the composite material is formed into a plurality of spaced reinforcing bands extending around the shell.
Abstract:
A fluid storage tank made of a plurality of steel plates welded together is reinforced by winding a plurality of continuous, high tensile strength, non-metallic filaments around and in contact with the plates and applying a resin to the filaments to define a composite material of the filaments in a resin matrix. In one embodiment, substantially the entire exterior surface of the shell is covered by the composite material to form a reinforcing jacket. In another embodiment, the composite material is formed into a plurality of spaced reinforcing bands extending around the shell.
Abstract:
1. A method of on-site fabrication of glass fiber, reinforced, plastic-resin tank structures, using a plurality of pre-fabricated, structural, arcuate liner panels of glass fiber, reinforced resin, comprising: providing a base support for the tank structure, temporarily securing vertical support and alignment beams to the base support at spaced intervals corresponding to the width of the liner panels to define the circumference of the tank structure, the beams extending the height of the tank structure, providing a central beam extending upwardly from the base support having a plurality of lateral arms extending therefrom into contact with the temporary vertical support beams to support the side walls of the structure during fabrication thereof, temporarily securing by removable rivets the liner panels to the vertical support and alignment beams, the panels extending the height of the beams and abutting each other along their side edges in coincidence with the vertical support beams to define the side walls of the tank structure, providing a top cover for the tank structure of glass fiber, reinforced resin, securing the top cover to the top edges of the liner panels, applying a mixture of chopped glass fiber and resin over the joint areas between the abutting liner panels and between the top cover and the top edges of the liner panels to seal them and form an integral tank structure, mixing resin and catalyst together for impregnation of continuous glass fiber roving for winding of the side walls of the tank structure closely adjacent the point of application of the resin-impregnated glass fiber to the side walls, impregnating the glass fiber roving with the resin catalyst mixture, winding successive layers of the resin-impregnated continuous glass fiber roving around the outer surfaces of the liner panels in a helical pattern extending spirally both upward and downward to provide hoop strength for the tank structure, removing the support and alignment beams temporarily secured to the liner panels from the interior of the tank structure after curing of the resin, and applying resin-impregnated chopped glass fiber over the inner portion of the base support surrounded by the liner panels and joint areas between the lower ends of the liner panels in the base support to form an integral bottom wall for the tank structure.
Abstract:
A method and apparatus are provided for forming large wall or shell-like structures such as tanks, vessels, containers and buildings on the site where they are to be used. In a first form, a filament-winding technique involves the use of a preform erected at the location of the shape to be formed, the preform and/or the filament-winding equipment being rotatable so as to dispose a plurality of filaments on the receiving surface in a circular arrangement to define strata of the wall being formed. The preform may comprise a thin sheetlike member erected at the site of use. The sheetlike wall may be self-supporting, supported by a skeletal frame or inflated and supported by air pressure. The filament-winding apparatus may include a base for supporting the preform and the eventual housing to be formed thereof, said base being stationary such as a tarmac formed on the ground or rotatable on a tarmac to rotate the preform while the apparatus for directing material such as fluent material and/or filaments against the surface of the preform moves in a vertical direction to properly dispense same and buildup a suitable wall formation thereof. In another form, the dispensing apparatus is also operative to rotate about the preform on a track or on an overhead conveyor such as a boom or overhead track erected at the site of location of the vessel or shell.
Abstract:
A process for winding a filament around a winding support. The winding support has a cylindrical shape with dome-shaped longitudinal ends and a roll axis, and is held by a holding device fixed to a base. The process includes the following, occurring in synchronization, feeding a filament, by means of at least one feeding device, towards the winding support, rotating the winding support with respect to the base around a pitch axis of the winding support, rotating unlimitedly the at least one feeding device around a yaw axis of the winding support with respect to the base, and/or rotating unlimitedly the winding support around the yaw axis of the winding support with respect to the base, and rotating unlimitedly the winding support with respect to the base around the roll axis of the winding support.