摘要:
A method of producing dispersed of high quality graphene/graphite oxides in a powder matrix to then be reacted to form a composite. Where the powders have similar hydrophobicity and the graphene/graphite oxides has minimal surface oxidation or minimal epoxy group and where the powders are sonically mixed.
摘要:
Hydrodynamic cavitation-inducing inertial, non-inertial, and combination reactors are employed in the hydrothermal synthesis of graphene and its derivatives, both in solution and vapor. Various hydrodynamic cavitation reactor embodiments are revealed. Water is used to both nucleate and “self-heal” graphene sheet growth in solution and vapor. Various methods of combustion, hydrothermal and dehydration synthesis of graphene and its derivatives are revealed. Additionally, water and ice are used as a substrate, both alone and in combination with other substrates, to grow and recover useful graphene and its derivatives.
摘要:
A process for the preparation of reduced graphene comprising the steps of: providing an expandable graphite intercalated with oxygen containing groups; heating the expandable graphite under conditions sufficient to cause expansion of the expandable graphite and formation of an expanded graphite comprising oxygen containing groups; and contacting the expanded graphite with carbon monoxide to reduce at least a portion of the oxygen containing groups and form a reduced expanded graphite comprising an array of reduced graphene. The process of the invention enables large volumes of high quality graphene to be produced.
摘要:
The present invention relates to a preparation method of graphene oxide based on mixed acid system. The method consists of the following steps. a. Preparation of graphite powder; b. Preparation of suspension liquid of first acid system; c. Preparation of second acid system; d. Preparation of graphene oxide. The invention also relates to a preparation method of graphene using graphene oxide obtained by method mentioned above. The method consists of the following steps. e. Preparation of graphene oxide-dispersant solution; f. Reduction of graphene oxide; g. Process of supersonic stripping; h. Obtaining graphene by separation and drying. The preparation methods of graphene oxide and graphene in our invention could reduce the dosage of strong acid as well as heat release of chemical reaction, and cause less corrosion to our equipments, which makes the reaction more effective and properties of graphene products better, facilitating the achievement of large scale industrial production.
摘要:
A method for producing colloidal graphene dispersions comprises the steps of: (i) stirring graphite oxide in an aqueous dispersion medium to form a dispersion; (ii) determining if the dispersion is optically clear in a light microscope at 1000 fold magnification after 1 to 5 hours of stirring, and, if not clear, removing any undissolved impurities in the dispersion, in order to form a colloidal graphene oxide dispersion, or a multi-graphene oxide dispersion, that is optically clear in a light microscope at 1000 fold magnification; and (iii) thermally reducing the graphene oxide, or multi-graphene oxide, in dispersion in the aqueous dispersion medium at a temperature between 120° C. and 170° C. under pressure in order to ensure that the dispersion medium is not evaporated to form a stable colloidal graphene dispersion or a stable multi-graphene dispersion. Using the method used for the preparation of the starting dispersion a graphene or a multi-graphene dispersion is obtained that can be further processed to multi-graphene with larger inter-planar distances than graphite. Such dispersions and multi-graphenes are suitable materials in the manufacturing of rechargeable lithium ion batteries.
摘要:
A catalyst composition is provided for isomerization of paraffins comprising of at least one heteropoly acid and reduced graphene oxide. Further provided are a process for preparation of the catalyst composition and a process for isomerization of paraffins using the catalytic composition.
摘要:
The present invention relates to a preparation method of graphene oxide based on anthracite. The method consists of the following steps. a. Preparation of ultra-clean anthracite powder; b. Pretreatment of ultra-clean anthracite powder; c. Preparation of anthracite oxide dispersion; d. Preparation of graphene oxide colloid solution; e. Preparation of graphene oxide. The invention also relates to a preparation method of graphene using graphene oxide obtained by method mentioned before. The method consists of the following steps. f. Preparation of graphene oxide-dispersant solution; g. Reduction of graphene oxide; h. Obtaining graphene by suction filtration and drying process. Based on the preparation of anthracite, the invention could reduce production costs effectively comparing to traditional preparation methods of graphene and graphene oxide, and make the reaction more fast and complete, facilitating the achievement of large scale industrial productio
摘要:
The invention relates generally to field grading materials and, more particularly, to field grading materials including graphene oxide, reduced graphene oxide, or both, exhibiting non-linear resistivity. In one embodiment, the invention provides a composite material comprising: a polymer material; and reduced graphene oxide distributed within the polymer material.
摘要:
A cationic polymerization process for the synthesis of nano-structured polymers containing graphene which comprises reacting graphite oxide dispersed in a solvent by means of ultrasounds, with at least one vinyl monomer and at least one vinyl aromatic monomer, in the presence of at least one strong inorganic acid and suitable for activating a cationic polymerization, wherein: —said graphite oxide contains from 5% to 60% by weight of bound oxygen, —said vinyl monomer contains at least one carboxylic group wherein the ratio between oxygen bound to the oxide and carboxylic groups ranges from 1:10 to 10:1 in moles per mole, and—the ratio between said vinyl aromatic monomer and the sum of the quantity of graphite oxide and vinyl monomer containing carboxylic groups ranges from 50% to 99% by weight.