Abstract:
The present invention provides a TiO2—SiO2 glass in which when used as an optical member for an exposure tool for EUVL, a thermal expansion coefficient is substantially zero at the time of irradiation with high-EUV energy light, and physical properties of a multilayer can be kept over a long period of time by releasing hydrogen from the glass. The present invention relates to a TiO2-containing silica glass having a fictive temperature of 1,100° C. or lower, a hydrogen molecule concentration of 1×1016 molecules/cm3 or more, and a temperature, at which a linear thermal expansion coefficient is 0 ppb/° C., falling within the range of from 40 to 110° C.
Abstract:
The present invention is to provide a TiO2—SiO2 glass whose coefficient of linear thermal expansion at the time of irradiating with high EUV energy light becomes substantially zero when used as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass, having a fictive temperature of 1,000° C. or lower, a OH concentration of 600 ppm or higher, a temperature at which the coefficient of linear thermal expansion becomes 0 ppb/° C. of from 40 to 110° C., and an average coefficient of linear thermal expansion in the temperature range of 20 to 100° C., of 50 ppb/° C. or lower.
Abstract:
Disclosed are methods for hydrogen loading silica glass and silica glass comprising loaded H2. The methods can lead to H2 gradient in the glass material. Alternatively, the method may involve the use of varying H2 partial pressure of H2 in the atmosphere. Both can result in expedited hydrogen loading process.
Abstract:
Disclosed in the application are a synthetic silica glass having low fluence-dependent transmission, particularly at about 193 nm, and a process for making the same. The glass may desirably exhibit a low level of fluorescence at 290 and 390 nm when activated at about 248 nm. The glass may desirably exhibit low level of LIWFD, [SiH*] and/or [ODC].
Abstract:
A mixed quartz powder contains quartz powder and two or more types of doping element in an amount of from 0.1 to 20 mass %. The aforementioned doped elements include a first dope element selected from the group consisting of N, C and F, and a second dope element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, the lanthanides and the actinides. The “quartz powder” is a powder of crystalline quartz or it is a powder of glassy SiO2 particles. It is made form natural occurring quartz or it is fabricated synthetically. The “quartz powder” may be doped. The compounding ratio of the total amount (M1) of the aforementioned first elements and the total amount (M2) of the aforementioned second elements as the ratio of the number of atoms (M1)/(M2) is preferably from 0.1 to 20. Al as well as the aforementioned doped elements is preferably included in a mixed quartz powder of this invention.
Abstract:
A silica glass article, such as a lens in a stepper/scanner system, having saturated induced absorption at wavelengths of less than about 250 nm. Saturated induced absorption is achieved by first removing Si—O defects in the silica glass by forming silicon hydride (SiH) at such defects, and loading the silica glass with hydrogen to react with E′ centers formed by photolysis of SiH in the silica glass article. The silicon hydride is formed by loading the silica glass with molecular hydrogen at temperatures of at least 475° C. After formation of SiH, the silica glass is loaded with additional molecular hydrogen at temperatures of less than 475° C.
Abstract:
The present invention provides a TiO2—SiO2 glass in which when used as an optical member for an exposure tool for EUVL, a thermal expansion coefficient is substantially zero at the time of irradiation with high-EUV energy light, and physical properties of a multilayer can be kept over a long period of time by releasing hydrogen from the glass. The present invention relates to a TiO2-containing silica glass having a fictive temperature of 1,100° C. or lower, a hydrogen molecule concentration of 1×1016 molecules/cm3 or more, and a temperature, at which a linear thermal expansion coefficient is 0 ppb/° C., falling within the range of from 40 to 110° C.
Abstract:
A synthetic quartz glass substrate having (i) an OH concentration of 1-100 ppm and a hydrogen molecule concentration of 1×1016-1×1019 molecules/cm3, (ii) an in-plane variation of its internal transmission at wavelength 193.4 nm which is up to 0.2%, and (iii) an internal transmission of at least 99.6% at wavelength 193.4 nm is suited for use with excimer lasers.
Abstract:
The present invention is to provide a TiO2—SiO2 glass having suitable thermal expansion properties as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass having a temperature, at which a coefficient of thermal expansion is 0 ppb/° C., falling within the range of 23±4° C. and a temperature width, in which a coefficient of thermal expansion is 0±5 ppb/° C., of 5° C. or more.
Abstract:
An ideal quartz glass for a wafer jig for use in an environment having an etching effect is distinguished by both high purity and high resistance to dry etching. To indicate a quartz glass that substantially fulfills these requirements, it is suggested according to the invention that the quartz glass is doped with nitrogen at least in a near-surface area, has a mean content of metastable hydroxyl groups of less than 30 wt ppm and that its fictive temperature is below 1250° C. and its viscosity is at least 1013 dPa·s at a temperature of 1200° C. An economic method for producing such a quartz glass comprises the following method steps: melting an SiO2 raw material to obtain a quartz glass blank, the SiO2 raw material or the quartz glass blank being subjected to a dehydration measure, heating the SiO2 raw material or the quartz glass blank to a nitriding temperature in the range between 1050° C. and 1850° C. in an ammonia-containing atmosphere, a temperature treatment by means of which the quartz glass of the quartz glass blank is set to a fictive temperature of 1250° C. or less, and a surface treatment of the quartz glass blank with formation of the quartz glass jig.