Abstract:
A lifetime diagnosis component for anticorrosive coating includes a plate-shaped base member having an aluminum layer on a surface thereof; and a sacrificial anode layer portion formed of zinc on the base member. The surface of the base member has a base-member exposing portion where the aluminum layer is exposed.
Abstract:
A pipeline comprising one or more pipes, the pipeline having: one or more sacrificial anodes (20) thereon to provide cathodic protection; one or more pre-formed metallic rings (12) around at least one pipe; and one or more electrical connections (14) attached to the or each metallic ring and to at least one sacrificial anode to allow an electrical current to flow between the pipeline and one or more of the sacrificial anodes. Because the or each metallic ring has a ‘one-piece’ form, it can be fitted to the pipe without welding, avoiding the problems associated with welding discussed above. A one-piece ring also has no obvious weaknesses, so that there is greater assurance of its fixing to or with the pipe, and the ring is more compliant with any working on the pipe, in particular bending, compared with sleeves or other types of long sections.
Abstract:
The deterioration of reinforced concrete structures by galvanic corrosion adversely affects roads, bridges, parking garages and buildings that use reinforcing steel in their construction. Galvanic cathodic protection is typically provided for such reinforced concrete structures using embedded sacrificial anodes, such as zinc, aluminum, and alloys thereof. Disclosed herein is an anode assembly (10) for cathodic protection of a reinforced concrete structure. The assembly comprises at least one sacrificial anode member (12). The anode member is covered with an ionically-conductive covering material (14) into which is bound an electrochemical activating agent at least partly covering the sacrificial anode member. One side (26) of the ionically-conductive covering material is configured to conform closely to a steel reinforcing bar. The conforming side has a non-conductive barrier (16) as an integral part of the covering material. Electrical connectivity is established between the anode member and a ferrous reinforcing bar (20) using conductive wires (18).
Abstract:
An electrode for a cathodic protection device that has one or more electrode bodies formed of a conductive wire. The electrode includes a pair of films made of an insulating material which are bonded to each other while sandwiching the electrode body therebetween. Preferably at least one of the pair of films is bonded to an engine body. The electrode body is exposed to the outside through one or more through-holes formed in at least one of the films. The electrode is less susceptible to short-circuiting or wire breakage when bent and is also easier to manufacture than conventional electrodes.
Abstract:
An anode immersed in liquid electrolyte of a battery is threadily engaged with a plastic holder impervious to the corrosive action of the electrolyte. Electrical connection is made to the underside of the anode through a liquid-tight fitting which passes up through the underside of the holder. A sealing gasket is placed at the lower interface between the anode and its holder and the threads are provided with a sealing tape. Additional anode capacity may be provide with the provision of a threaded aperture on the surface of the anode for receiving a supplemental anode having a threaded projection which engages the aperture.
Abstract:
A electronic corrosion protection (ECP) device includes a physical interface for connecting to an on-board diagnostic port of a vehicle, The ECP device can be easily and safely installed in a vehicle and provide corrosion protection to metal components of the vehicle.
Abstract:
A molten salt reactor comprising a reactor vessel and a molten salt contained within the reactor vessel. There is a corrosion reduction unit configured to process the molten salt to maintain an oxidation reduction ratio, (E(o)/E(r)), in the molten salt at a substantially constant level, wherein E(o) is an element (E) at a higher oxidation state (o) and E(r) is the element (E) at a lower oxidation state (r).
Abstract:
An aluminum alloy clad material having a core material and a sacrificial anode material clad on at least one surface of the core material, wherein the core material comprises an aluminum alloy comprising 0.050 to 1.5 mass % (referred to as “%” below) Si, 0.050 to 2.0% Fe and 0.50 to 2.00% Mn; the sacrificial anode material includes an aluminum alloy containing 0.50 to 8.00% Zn, 0.05 to 1.50% Si and 0.050 to 2.00% Fe; the grain size of the sacrificial anode material is 60 μm or more; and a ratio R1/R2 is 0.30 or less, wherein R1 (μm) is a grain size in a thickness direction and R2 (μm) is a grain size in a rolling direction in a cross section of the core material along the rolling direction; a production method thereof; and a heat exchanger using the clad.
Abstract:
A device for the cathodic protection of a metal wall against corrosion in a saline environment, includes an anode and means for connecting said anode to said wall. The anode has a higher electrochemical potential than the wall, wherein the anode is placed in a compartment delimited by a wall permeable to electrons and, optionally, to water. The device includes a porous outer layer made from a material selected from: polymeric materials, ceramic materials or hydrated inorganic materials and at least one porous layer having the ability to collect the cations emitted by the anode during the dissolution of same. The material forming the at least one layer is selected from osmotic membranes, active carbon, a cation exchange resin such as a zeolite, a cation-collecting polymer with nanofillers, cation-collecting mineral compounds such as phyllosilicates and inosilicates, cation-retaining nanofiltering semi-permeable organic microporous membranes.
Abstract:
An apparatus for providing electrochemical corrosion protection to a process vessel, the apparatus comprises at least one anode in communication with the process vessel; a DC current supply being electrically coupled to the process vessel and to the at least one anode; and a potential control unit in communication with the DC current supply. The potential control unit is electrically coupled to the process vessel and to a reference electrode in communication with the process vessel. The current supplied by the DC current supply for passivating the process vessel is adjustable by the potential control unit. The process vessel may comprise at least one of duplex stainless steel and superaustenitic stainless steel.