Abstract:
A desmodromic valve and cam system is provided which is adapted to be installed into an internal combustion pushrod engine. The system includes a camshaft assembly having a plurality of removably attached cam lobes installed onto a main camshaft; a valve connector assembly installed onto a distal tip of each valve; a rocker having a valve movement end mechanically linked to a respective valve connector and a pushrod connecting end mechanically linked to an upper distal end of a pushrod; a hydraulic lifter follower assembly assigned to each valve which includes a pin disposed on a distal end thereof which is adapted to engage and track a follower groove formed on each respective cam lobe; and a pushrod assigned for each valve, each pushrod having lower distal end mechanically linked to a respective hydraulic follower lifter. The configuration of the aforementioned system eliminates the need to use valve springs to return the valves to a closed position, thereby, increasing horsepower and fuel efficiency, while simultaneously reducing emissions.
Abstract:
A valve actuating assembly for opening and closing a valve includes a cam mounted on a camshaft and enclosed by a pair of rotary cam guides each of which includes a roller channel having an outer race for receiving opposed ends of a roller that extends transversely from the lowermost end of a valve lifter disposed between the cam guides with the lifter being mounted to a connecting rod. The lifter has a radius at the lowermost end for engagement with the cam during certain engine phases, and the connecting rod is pivotally attached to a rocker arm, and the rocker arm attached to a valve. A valve spring mounted on the stem of the valve extends and compresses coincident with the rotation of the cam guides and contact of the roller ends with the outer races of the cam guides thereby actuating the lifter to open and close the valve with positive force and wherein the point of contact for valve opening and closing transfers between the engagement of the roller ends with the outer races and the radius against the cam during the various engine phases with the valve spring holding the valve in the closed position during certain phases through the exertion of positive force.
Abstract:
A valve-driving system for an internal combustion engine is provided with: an electric motor for generating a rotational driving force to drive a valve for intake or exhaust mounted on a cylinder in the internal combustion engine so as to open and close the valve in synchronization with a piston motion in the internal combustion engine; a transmitting device capable of changing between (i) a first condition to transmit therethrough the rotational driving force to the valve from said electric motor and (ii) a second condition to stop an opening or closing operation of the valve or to make the valve driven by a low lift amount; a judging device for judging whether or not synchronization between the opening or closing operation of the valve and the piston motion is abnormal; and a fail-safe device for changing said transmitting device to the second condition if it is judged by the judging device that the synchronization is abnormal.
Abstract:
The present invention provides a means to reduce holding current and driving current of EMVD's effectively and practically and to provide soft landing of a valve. The invention incorporates a nonlinear mechanical transformer as part of an EMVD system. The nonlinear mechanical transformer is designed for the spring and the inertia in the EMVD to have desirable nonlinear characteristics. With the presently disclosed invention, the holding current and driving current are reduced and soft valve landing is achieved. The nonlinear characteristics of a nonlinear mechanical transformer can be implemented in various ways. The concept of the invention can be applied not only to EMVD's but also to general reciprocating and bi-stable servomechanical systems, where smooth acceleration, soft landing, and small power consumption are desired.
Abstract:
Disclosed are a linkage control device and a blood gas analyzer adopting the linkage control device. The linkage control device comprises a power unit and a rotating component (4) provided with bosses (41, 42). The power unit generates power to drive the rotating component (4) to rotate. The linkage control device further comprises valve components (5, 6, 7, 8), a signal control unit, sensing switches, and sensing pins (43, 44, 45, 46). The valve components (5, 6, 7, 8) are matched with the bosses (41, 42) of the rotating component (4) in a pushing manner. The signal control unit controls the start or stop of the power unit. The sensing switches are connected to the signal control unit via signals. The sensing pins (43, 44, 45, 46) are arranged in pair with the sensing switches and are arranged on the rotating component (4).
Abstract:
An axial cam with a plurality of followers mounted within its diameter drives the followers in both axial directions. The followers operatively actuate valves such as those of an internal combustion engine. The cam can be driven about its exterior perimeter, providing an axially compact embodiment. The phasing of select followers can be established by modifying the azimuth positions of those followers with the cam in operation. By providing the cam with a symmetric actuating profile its followers can be linked to alternately actuate same-function valves in different engine cylinders.
Abstract:
An engine, e.g., a cam drive, barrel-type internal combustion engine, that includes: a main drive shaft defining a longitudinal axis; a sinusoidal main drive cam rigidly attached to the main drive shaft; a plurality of cam members that are in contact with the sinusoidal main drive cam and that are configured to follow the sinusoidal main drive cam, wherein rotation of the sinusoidal main drive cam corresponds to reciprocating linear movement of each of the plurality of cam members in a direction parallel to the longitudinal axis; for each cam member, a pair of linear pistons disposed on opposite sides of the cam member for reciprocating linear movement within respective cylinder bores.
Abstract:
A valve-driving system for an internal combustion engine is provided with: an electric motor for generating a rotational driving force to drive a valve for intake or exhaust mounted on a cylinder in the internal combustion engine so as to open and close the valve in synchronization with a piston motion in the internal combustion engine; a transmitting device capable of changing between (i) a first condition to transmit therethrough the rotational driving force to the valve from said electric motor and (ii) a second condition to stop an opening or closing operation of the valve or to make the valve driven by a low lift amount; a judging device for judging whether or not synchronization between the opening or closing operation of the valve and the piston motion is abnormal; and a fail-safe device for changing said transmitting device to the second condition if it is judged by the judging device that the synchronization is abnormal.