Abstract:
A flue gas treatment process and system is presented. The system includes a fan capable of moving a flue gas through a flue gas desulfurizer, direct contact cooler, and CO2 absorber, without the need for a booster fan. The system also includes a direct contact cooler and CO2 absorber that are configured to withstand gas conditions present at the flue gas desulfurizer exit. When the direct contact cooler and CO2 absorber are shutdown, the speed of the fan is lowered and the flue gas continues to flow through the cooler and CO2 absorber and out a chimney. The overall cost of installing, operating, and maintaining the system is lower than that of conventional processes and systems.
Abstract:
Methods and systems are provided for operating an engine having a hydrocarbon retaining system and an emission control device coupled to an engine exhaust, the engine exhaust comprising a venturi. One example method comprises, during a storing condition, routing exhaust gas through the venturi without generating a venturi action, and then to the hydrocarbon retaining system, while bypassing the emission control device, to store hydrocarbons in the hydrocarbon retaining system, and during a purging condition, routing exhaust gas through the venturi while generating venturi action, then to the emission control device, and then to the hydrocarbon retaining system, to purge stored hydrocarbons, wherein a flow of purged hydrocarbons is drawn back to the venturi via venturi action.
Abstract:
Hydrocarbon traps used to trap then release unburned hydrocarbons upon startup of a spark ignition internal combustion engine are sensitive to degradation if exposed to normal temperature exhaust gases. On board diagnostics of HC traps are provided by the invention, by incorporating a heat sensitive oxygen storage material in the HC trap material, and using conventional determination of OSC efficiency to determine if the HC trap material has been exposed to excessive temperature.
Abstract:
In an emission control system, an absorbent in an exhaust-emission passage absorbs a particular component in the emission with a temperature thereof being lower than a first temperature, and desorbs therefrom the absorbed particular component with the temperature thereof being equal to or higher than the first temperature. A catalyst in the exhaust-emission passage converts the particular component desorbed from the absorbent into another component with a temperature thereof being equal to or higher than a second temperature higher than the first temperature. A heat recovery device is disposed in the exhaust-emission passage upstream of the absorbent and recovers heat from the exhaust emission by heat exchange between a heat-transfer medium and the exhaust emission. An adjusting unit adjusts an amount of heat to be recovered by the heat recovery device to thereby adjust a temperature state of the exhaust emission.
Abstract:
Systems and methods of performing a simplified data transfer are provided. For example, a simplified data transfer system may include two or more devices configured to perform a simplified data transfer. The first device may be configured to save and transfer data associated with applications open on the first device. When the second device initiates communication, the first device may automatically send the open application data to the second device.
Abstract:
This exhaust gas purification device for an internal combustion engine is provided with a particulate filter disposed in an engine exhaust system, and a catalytic device disposed downstream of the particulate filter in the engine exhaust system. The catalytic device holds sulfuric acid as a sulfate and releases the product as SO2.
Abstract:
Systems and methods of performing a simplified data transfer are provided. For example, a method of simplified data transfer may involve downloading an index of files accessed or modified on a home computer onto a handheld device from an online data storage server, displaying on the handheld device a user selectable list of files based on the index of files, issuing a request for a file selected by a user from the list of files from the handheld device to the data storage server, and receiving the file selected by the user onto the handheld device from the data storage server.
Abstract:
A hydrocarbon trap is provided for reducing cold-start hydrocarbon emissions. The trap contains an acidic absorption material for improving absorption of low molecular weight hydrocarbons. The acidic absorption materials may be used either alone or in combination with zeolites which are integrated into and/or supported on a monolithic substrate. The hydrocarbon trap may be positioned in the exhaust gas passage of a vehicle such that hydrocarbons are adsorbed on the trap and stored until the engine and exhaust reach a sufficient temperature for desorption.
Abstract:
A method for producing electrical power and capture CO2, where gaseous fuel and an oxygen containing gas are introduced into a gas turbine to produce electrical power and an exhaust gas, where the exhaust gas withdrawn from the gas turbine is cooled by production of steam in a boiler (20), and where cooled exhaust gas is introduced into a CO2 capture plant for capturing CO2 from the cooled exhaust gas leaving the boiler (20) by an absorption/desorption process, before the treated CO2 lean exhaust gas is released into the surroundings and the captured CO2 is exported from the plant, where the exhaust gas leaving the gas turbine has a pressure of 3 to 15 bara, and the exhaust gas is expanded to atmospheric pressure after leaving the CO2 capture plant. A plant for carrying out the method is also described.
Abstract:
A purification system for variable post injection in LP EGR, the system includes a turbo charger disposed downstream of a diesel engine, a DPF (catalyzed particulate filter) disposed downstream of the turbo charger, a NOx reduction apparatus disposed upstream or downstream of the DPF, a bypass line diverged from the DPF for mixing exhaust gas and air inflowing the turbo charger, a exhaust gas control portion disposed downstream of the DPF for controlling flowing of the exhaust gas and a lean/rich controlling portion for controlling lean/rich of the exhaust gas.