Abstract:
An exhaust heat recovery system includes an exhaust pipe through which exhaust gas exhausted from an engine moves, a heat exchanger mounted in the exhaust pipe and inducing heat exchange between the exhaust gas and a working fluid flowing therein, a plurality of reservoirs supplying working fluids to the heat exchanger, and channel adjusting valves allowing any one of the plurality of reservoirs to be in communication with the heat exchanger.
Abstract:
Embodiments as described herein provide a simplified turbo recharger for an efficient, reliable, low-cost system that delivers good performance for improving efficiency of a vehicle using electric power. Embodiments as described herein may be used with electric motor, combustion engine hybrid vehicles to improve the fuel efficiencies of such vehicles. A turbine may be positioned in an exhaust stream of a vehicle that is coupled to a generator to recharge the battery of a vehicle. The turbine may include a wastegate to permit the exhaust stream to enter or bypass the turbine depending on the charge of the battery, the rate of rotation of the turbine, pressure within the turbine, the speed of the engine, or a combination of the above.
Abstract:
A heat engine for driving a drive shaft, including at least a gas generator and a turbine, the gas generator supplying the turbine with engine gas and the turbine driving the engine shaft in rotation. The gas generator is a four-stroke internal combustion engine, and includes a compressor for supplying air to the internal combustion engine, the compressor being mechanically driven by the internal combustion engine, and the turbine is mechanically free relative to the internal combustion engine.
Abstract:
An improved turbocompound system, in particular in the field of industrial vehicles. A first turbine drives a fresh air compressor. A power turbine is arranged downstream of the first turbine and operatively coupled with the crankshaft of the engine through a clutch. A first electric motor/generator is operatively coupled with the turbocharger system. A second electric motor/generator is operatively coupled with the power turbine. The first and second electric motor/generators are electrically interconnected, and controlled as a motor or a generator in an opposite way with respect to each other, so that the electric energy produced by one is consumed by the other and vice versa.
Abstract:
The invention concerns a stationary power plant, in particular a gas power plant, to generate electricity; having an internal combustion engine, comprising a fuel medium inlet and an exhaust gas outlet, whereas an exhaust-gas flow of the internal combustion engine is discharged via the exhaust gas outlet; having an electrical generator, which is driven by the internal combustion engine to generate electricity, and which is coupled or can be coupled to an electrical grid, in order to feed the generated electricity into said grid; having a fuel medium supply, which is connected to the fuel medium inlet; wherein a steam circuit, in which a working medium is circulated by means of a feed pump, is provided, comprising a heat exchanger arranged in the exhaust gas flow, by means of which waste heat of the exhaust gas flow is transferred to the working medium for partially or completely evaporating the working medium, further comprising a condenser, in which the working medium partially or completely condenses. The invention is characterized in that a reciprocating piston expander is provided in the steam circuit, in which the working medium expands to produce mechanical work, and the reciprocating piston expander is connected mechanically to the internal combustion engine and/or the electrical generator by means of a releasable clutch.
Abstract:
Two-stage exhaust apparatus for a reciprocating internal combustion engine having one or more cylinders each with at least one piston and at least one exhaust port, the apparatus including a first-stage jet port in each cylinder, the jet port configured to open to release high-pressure exhaust gas to a high-pressure motor prior to exhaust-port opening.
Abstract:
A multilink-type internal combustion engine includes a power transmission structure capable of transmitting rotation of a crankshaft to a pivot shaft. The power transmission structure comprises: a planet gear mechanism having a sun gear mounted on the crankshaft; a drive gear provided on a ring gear section of the planet gear mechanism; a driven gear mounted on the pivot shaft and meshing with the drive gear; and an adjustment mechanism for switching a rotation direction of a carrier of the planet gear mechanism to thereby adjust a meshing phase of the driven gear relative to the drive gear.
Abstract:
A super-turbocharger utilizing a high speed, fixed ratio traction drive that is coupled to a continuously variable transmission to allow for high speed operation is provided. A high speed traction drive is utilized to provide speed reduction from the high speed turbine shaft. A second traction drive provides infinitely variable speed ratios through a continuously variable transmission. Gas recirculation in a super-turbocharger is also disclosed.
Abstract:
An opposed-piston engine has an air handling system equipped with a turbo-compound system that includes a power turbine for producing a rotary output in response to a flow of exhaust gas flowing into the turbine. The rotary output is connected to a crankshaft or other rotating element of the opposed-piston engine for converting some of the exhaust gas energy into mechanical energy supplied to the crankshaft.
Abstract:
Embodiments as described herein provide a simplified turbo recharger for an efficient, reliable, low-cost system that delivers good performance for improving efficiency of a vehicle using electric power. Embodiments as described herein may be used with electric motor, combustion engine hybrid vehicles to improve the fuel efficiencies of such vehicles. A turbine may be positioned in an exhaust stream of a vehicle that is coupled to a generator to recharge the battery of a vehicle. The turbine may include a wastegate to permit the exhaust stream to enter or bypass the turbine depending on the charge of the battery, the rate of rotation of the turbine, pressure within the turbine, the speed of the engine, or a combination of the above.