Abstract:
A sensorless method of detecting piston collisions in a reciprocating free piston linear compressor driven by an electronically commutated linear motor having at least one excitation winding is provided. A free piston gas compressor is also provided.
Abstract:
A sensorless method of detecting piston collisions in a reciprocating free piston linear compressor driven by an electronically commutated linear motor having at least one excitation winding is provided. A free piston gas compressor is also provided.
Abstract:
A free piston gas compressor comprising a cylinder, a piston reciprocable within the cylinder and a reciprocating linear electric motor derivably coupled to the piston having at least one excitation winding. A measure of the reciprocation time of the piston is obtained, any change in the reciprocation time is detected and the power input to said excitation winding is adjusted in response to any detected change in reciprocation time.
Abstract:
A plunger arrival target time adjustment method for use in conjunction with a gas-producing well includes the steps of setting times of A valve open and close states, setting times of B valve open and close states where the time of B valve open state occurs separately from and in succession after the time of A valve open state, setting a target time for arrival of a plunger starting with opening of the well upon converting the A valve to the open state and ending with sensing of arrival of the plunger at an upper terminal position of the well, measuring travel time of the plunger from the opening of the well to the sensing of plunger arrival irrespective of whether the arrival occurs during the time of A valve open state or the time of B valve open state, and setting a new target time for plunger arrival based on a predetermined relationship of the measured plunger arrival travel time to the previously set plunger arrival target time.
Abstract:
The present invention is a sludge pump system which includes a means for monitoring operation of a sludge pump. The sludge pump includes a material cylinder and a piston moveable in the material cylinder. A pump drive moves the piston during working cycles which include a pumping stroke and a filling stroke. A pump valve mechanism connects the material cylinder to an outlet during pumping strokes and connects the material cylinder to an inlet during filling strokes. A means for monitoring operation of the pump is provided. The means for monitoring includes a means for sensing a first parameter related to operation of the pump drive, a means for sensing a second parameter indicative of operation of the piston, and a means for determining errors in the operation of the pump based upon the first parameter and the second parameter.
Abstract:
A system for the transport of high solids sludge includes a positive displacement pump for pumping sludge through a pipeline. The volume of sludge transported is accurately measured by determining the fill percentage during pumping cycle.
Abstract:
A method for operating a construction-material and/or viscous-material pump for conveying construction material and/or viscous material has the steps of: a) determining a required value of a power or of a size of the motor system, corresponding to the power, for moving the conveying piston, b) setting, on the basis of the required value, a speed value of the motor system in such a manner that a power and/or speed reserve value between an operating point, wherein the operating point is defined by the required value of the power or of the size and the speed value, and a characteristic curve of the motor system, wherein the characteristic curve is defined by maximum values of the power or of the size and speed values, wherein maximum values are different for different speed values at least in sections, is greater than or equal to a reserve limit value.
Abstract:
A fluid delivery system for delivering a metered dose of fluid from a supply tank (28) to a downstream chamber or vessel (10), comprises a pump apparatus (20) comprising a pump plunger (32) which is operable to perform a pumping stroke under the control of an electromagnetic actuator (36), including a solenoid (36a), to effect delivery of the fluid and a control unit (24) for supplying an input signal (58) to the solenoid (36a) to initiate a current flow to the solenoid (36a) and thereby initiate movement of the pump plunger (32). An electronic device (54) provides an output signal to indicate that movement of the pump plunger has stopped at the end of the pumping stroke, and a timer determines a time difference between the input signal (58) being supplied to the solenoid (36a) and the output signal being output by the electronic device (54). A processor (26) compares the time difference with a predetermined time difference and determines, as a result of the comparison, whether or not the pump plunger (32) has performed a valid pumping stroke in which an intended volume of fluid is displaced.
Abstract:
A fluid delivery system for delivering a metered dose of fluid from a supply tank (28) to a downstream chamber or vessel (10), comprises a pump apparatus (20) comprising a pump plunger (32) which is operable to perform a pumping stroke under the control of an electromagnetic actuator (36), including a solenoid (36a), to effect delivery of the fluid and a control unit (24) for supplying an input signal (58) to the solenoid (36a) to initiate a current flow to the solenoid (36a) and thereby initiate movement of the pump plunger (32). An electronic device (54) provides an output signal to indicate that movement of the pump plunger has stopped at the end of the pumping stroke, and a timer determines a time difference between the input signal (58) being supplied to the solenoid (36a) and the output signal being output by the electronic device (54). A processor (26) compares the time difference with a predetermined time difference and determines, as a result of the comparison, whether or not the pump plunger (32) has performed a valid pumping stroke in which an intended volume of fluid is displaced.
Abstract:
A compressor having a sensorless motor and a driving method thereof. The compressor includes a sensorless motor having a rotation shaft connected to a rotator, a piston for performing a compression stroke and an intake stroke between a top dead center and a bottom dead center thereof, and a crank connecting the rotation shaft to the piston. The method includes forcibly aligning the rotator such that the rotator is positioned at a start position in the intake stroke of the piston, and accelerating rotation of the forcibly aligned rotator.