摘要:
An object is to move a rail molecule by means of a biomolecular motor deposited on a base and inactivate the biomolecular motor through irradiation with light having a predetermined wavelength, to thereby readily and reliably fix the rail molecule at a predetermined position, while orienting the rail molecule in a predetermined direction without employment of any reagent. A method for fixing a rail molecule which has polarity and on which a biomolecular motor moves in a direction corresponding to the polarity includes depositing a biomolecular motor on a base; moving a rail molecule by means of the biomolecular motor; and inactivating the biomolecular motor by irradiating the biomolecular motor with light having a predetermined wavelength when the rail molecule reaches a predetermined position, to thereby fix the rail molecule so that it is oriented in a predetermined direction.
摘要:
A skin structure has a skin and a power generation system attached to the skin. The power generation system has a turbine, one or more tubes fluidly coupled to the turbine, and a generator configured to generate electrical power in response to motion of the turbine. The skin structure may form a portion of an outer covering of a stationary structure, such as a building, or an outer covering of a manned or unmanned vehicle, such as a ground or aerial motor vehicle or a marine or submarine motor vehicle.
摘要:
A skin structure has a skin and a power generation system attached to the skin. The power generation system has a turbine, one or more tubes fluidly coupled to the turbine, and a generator configured to generate electrical power in response to motion of the turbine. The skin structure may form a portion of an outer covering of a stationary structure, such as a building, or an outer covering of a manned or unmanned vehicle, such as a ground or aerial motor vehicle or a marine or submarine motor vehicle.
摘要:
The present invention is directed towards a ceramic nanocomposite comprising a nanostructured carbon component inside a ceramic host. The ceramic nanocomposite may further comprise vapor grown carbon fibers. Such nanostructured carbon materials impart both structural and thermal barrier enhancements to the ceramic host. The present invention is also directed towards a method of making these ceramic nanocomposites and for methods of using them in various applications.
摘要:
A self-contained delivery device for delivery a selected volume of stored electrolyte solution at selected time intervals is disclosed. The device includes a housing having a delivery port, a chamber containing an upstream supply reservoir for holding a quantity of electrolyte solution, a downstream delivery reservoir for receiving electrolyte solution from the supply reservoir and, disposed between the two reservoirs, a membrane having a plurality of flow-through channels extending between the two reservoirs. A pair of electrodes placed in the chamber on either side of the membrane and controlled by a controller contained within the housing for pumping selected quantities of the electrolyte solution at selected time intervals. The device includes a chamber, and a membrane disposed in said chamber and having a channel extending between an upstream chamber region, where the said channel has a selected minimum cross-sectional dimension in the range between 2 and 100 nm.
摘要:
The present invention is a method and apparatus for achieving high work output per unit volume in micro-robotic actuators, and in particular TiNi actuators. Such actuators are attractive as a means of powering nano-robotic movement, and are being developed for manipulation of structures at near the molecular scale. In these very small devices (one micron scale), one means of delivery of energy is by electron beams. Movement of mechanical structures a few microns in extent has been demonstrated in a scanning electron microscope. Results of these and subsequent experiments will be described, with a description of potential structures for fabricating moving a microscopic x-y stage.
摘要:
A self-contained delivery device for delivery a selected volume of stored electrolyte solution at selected time intervals is disclosed. The device includes a housing having a delivery port, and contained within the housing, a chamber containing an upstream supply reservoir for holding a quantity of electrolyte solution, a downstream delivery reservoir for receiving electrolyte solution from the supply reservoir and, disposed between the two reservoirs, a membrane having a plurality of flow-through channels extending between the two reservoirs. A pair of electrodes placed in the chamber on either side of the membrane are controlled by a controller contained within the housing, for pumping selected quantities of the electrolyte solution at selected time intervals. The invention also includes a device for detecting a target nucleic acid sequence contained in a solution of solution of nucleic acid fragments. The device includes a chamber, and a membrane disposed in said chamber and having a channel extending between an upstream chamber region, where the said channel has a selected minimum cross-sectional dimension in the range between 2 and 100 nm. Attached to a wall portion of the channel, is a capture nucleic acid having a sequence complementary to the target sequence. Upstream and downstream electrodes disposed in the upstream and downstream chamber regions, respectively, are in contact with electrolyte solution placed in the corresponding chamber regions. A controller in the device includes a power source operatively connected to the electrodes for applying a selected voltage potential across the channel, to move individual nucleic acid sequences contained in the solution through the channel, where the sequences can hybridize to complementary target sequences bound to the channel wall portion.
摘要:
The disclosure relates to a method for making an actuator based on carbon nanotubes. The method includes: providing a carbon nanotube layer; depositing a vanadium oxide (VOx) layer on the carbon nanotube layer; and annealing the VOx layer in an oxygen atmosphere to form a vanadium dioxide layer (VO2) layer. Because the drastic reversible phase transition of VO2, the actuator has giant deformation amplitude and fast response.
摘要:
The present invention is turbine generator capable of integration into a bio-physiological or microfluidic system. The generator can convert biomechanical energy into electrical energy by using electromagnetic subsystems to transform the kinetic energy to electricity. These systems have the potential to convert hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessel, dynamic fluid in nature) into electric energy that may be sufficient for self-powering nano/micro devices and systems, such as artificial organs, valves, sensors, micro motors, and micro robots. The system incorporates a new turbine model having, notched blades; a rotor in levitation; and a special casing capable of integration into a bio-physiological or microfluidic system.
摘要:
Method for manufacturing small wind energy gathering devices, for example, of geometrical dimensions tip to ⅛th of an inch (microdevices), employing micro-fabrication techniques. For example, three-dimensional single chemical composition parts of a small wind energy gathering device are manufactured using two-photon three dimensional lithography. Preferably, a plurality of such parts are manufactured in parallel, thereby optimizing the production process. The plurality of parts may be handled and assembled using precision instruments such as micro-tweezers, micro-scissors, and holographic lasers. Nanowires may be used to interconnect a plurality of the microdevices together, or to connect components of a particular microdevice. These nanowires are produced in nanowire arrays and are attached to a common base structure. Additionally, a form of injection molding and polymer materials may be utilized in the manufacturing of the small wind energy gathering devices (microdevices), which provide protective coatings and surfaces of reduced friction.