摘要:
A microchip for forming an emulsion has a first glass substrate, a second glass substrate and a silicon substrate. The silicon substrate has formed therein a first fluid flow path through which a first fluid flows and a second fluid flow path through which a second fluid that is not mixed with the first fluid flows. The first fluid flow path has a plurality of branched flow paths that join at a joint portion. The second fluid flow path communicates with the joint portion. The silicon substrate has formed therein an emulsion formation flow path that faces an edge portion of the second fluid flow path at the joint portion. An emulsion composed of the first fluid and the second fluid that is surrounded by the first fluid is formed in the emulsion formation flow path.
摘要:
An ice-candy forming container is provided which produces ice-candies having a complicated shape copying the face of a cartoon character or the like with higher quality and without a loss in shape. A forming container includes a first mold having a pattern portion formed in one face thereof, and a second mold configured to slide over and along the one face of the first mold, in a close contact relation, in directions designated by arrows A1-A2, so as to contain the first mold therein. In such a containing position, the second mold contacts externally and closely substantially an entire surface of the outer periphery of the pattern portion.
摘要:
A microchip for forming an emulsion has a first glass substrate, a second glass substrate and a silicon substrate. The silicon substrate has formed therein a first fluid flow path through which a first fluid flows and a second fluid flow path through which a second fluid that is not mixed with the first fluid flows. The first fluid flow path has a plurality of branched flow paths that join at a joint portion. The second fluid flow path communicates with the joint portion. The silicon substrate has formed therein an emulsion formation flow path that faces an edge portion of the second fluid flow path at the joint portion. An emulsion composed of the first fluid and the second fluid that is surrounded by the first fluid is formed in the emulsion formation flow path.
摘要:
Provided are a heat curable adhesive composition and an adhesive article suited for dicing of a semiconductor and die bonding of the diced semiconductor chip, and a semiconductor apparatus and a process for preparing a semiconductor apparatus using the adhesive composition and article. In one embodiment, the present invention provides a heat curable adhesive composition comprising a caprolactone-modified epoxy resin and a tack reducing component. Another embodiment of the present invention provides an adhesive article comprising a heat curable adhesive layer of a heat curable adhesive composition comprising a caprolactone-modified epoxy resin, a tack reducing component, and a backing layer carrying said adhesive layer on at least a portion of the backing layer.
摘要:
An aquatic plant cutting apparatus comprises a first fixed edge having a ribbon-like shape and having a cutting edge portion at its edge and at least one rotary edge juxtaposed along the front edge portion of the first fixed edge, and an aquatic plant recovery boat is constituted by fitting the aquatic plant cutting apparatus to floating means having a propeller through a connection member.
摘要:
A method for culturing hepatocytes, wherein hepatocytes embedded in an extracellular matrix is placed on a gas-permeable membrane and the hepatocytes are cultured while being supplied with oxygen from the gas-permeable membrane side. By this, the polarity in the hepatocytes can be induced and a bile canaliculus can be formed in a short period of time. Further, the formed polarity can be maintained for a longer period.
摘要:
A method of producing a microstructured gel in a shape in accordance with a pattern comprises: dropping a polymerizable monomer aqueous solution containing a polymerizable monomer component onto a portion of a surface of a substrate having a pattern comprising a fine groove in the surface; moving by capillary action the polymerizable monomer aqueous solution along the groove constituting the pattern; and subjecting the polymerizable monomer aqueous solution in the groove to polymerization.
摘要:
There is provided a planar lipid bilayer array formed by microfluidic technique and a method of analysis using the planar lipid bilayers, providing the advantages such as portability, decreased analysis time, a smaller amount of required reagents, and parallel automation with high reproducibility. The planar lipid bilayer array formed by microfluidic technique is a planar lipid bilayer array formed by microfluidic technique (PDMS device) 1 saturated with water by preliminarily immersing in water, comprising microchannels 2 connected to an inlet of a microfluidic channel and arranged in parallel, and microchambers 3 having apertures on both sides of the microchannel 2.
摘要:
Provided are a method and a device for synthesizing proteins from DNA molecules captured in microchambers, whereby the distance between microchambers can be shortened, thereby allowing the density of arrays to be increased. Microchambers (32) are arranged at a high density. A DNA solution (34) which has been diluted so as to capture one DNA molecule on average is enclosed in the microchambers (32). Then, mRNA is synthesized using one DNA molecule on average as a template. Based on this mRNA, a protein (37) is extracellularly synthesized.
摘要:
A method for fabricating a microarray of plural soft materials includes: vapor-depositing a first layer poly(para-xylylene) resin on a substrate, forming a first micro pattern in the poly(para-xylylene) resin; obtaining a substrate including a first microarray formed by pouring a first soft material solution, freeze-drying the first soft material to obtain a micro-arrayed substrate of the freeze-dried first soft material; vapor-depositing a second layer poly(para-xylylene) resin on the micro-arrayed substrate of the freeze-dried first soft material, forming a second micro pattern placed differently from the first micro pattern by penetrating the poly(para-xylylene) resin of the first and second layers, forming a second microarray on the substrate by pouring a second soft material solution; and forming a microarray of the first and second soft materials on the substrate by peeling off the poly(para-xylylene) resin of the first and second layers.