Abstract:
A programmable controller has a rack that houses and electrically connects a number of I/O modules and a processor module. The processor module includes a external communication network interface, a system memory, a processor section which executes a user-defined control program and a I/O interface that handles the exchange of data with the other modules. The I/O interface has circuitry for pre-processing data from defined input modules, thereby relieving the processing section of certain tasks. The shared memory contains information defining the input module from which to obtain data for pre-processing and the bits of that data to be examined for specified logic level transitions. The stored information also designates the frequency at which the data is to be read from the defined input module and how many occurrences of the specified logic level transitions must take place before the I/O interface signals the processor section that the pre-processing is complete.
Abstract:
The present invention relates to a process monitoring system for monitoring an industrial process, said process monitoring system comprising a main sensor and at least one additional sensor separate from the main sensor, wherein the process monitoring system furthermore comprises a data evaluation unit separate from the sensors, wherein the main sensor and the additional sensor are each configured to acquire measurement data. The main sensor is coupled to the additional sensor via a first data link and is configured to receive the measurement data of the additional sensor via the first data link, wherein the main sensor is coupled to the data evaluation unit via a second data link and is configured to transmit its own measurement data and the measurement data of the additional sensor to the data evaluation unit via the second data link.
Abstract:
Methods and systems for managing a premises are described. A gateway device may monitor a plurality of devices at a premises. A mobile device may receive, from the gateway device, data indicative of one or more events of the plurality of devices. The mobile device may output a user interface comprising status information associated with the plurality of devices. The user interface may allow for user input to generate control operations associated with the premises.
Abstract:
In an embodiment, a system contains a network testing engine that sends test data along different paths of a network between a source and a destination, wherein each path contains a plurality of network nodes, and receives, in response to sending the test data, response data about the paths. The system further contains a network path characteristics engine that determines characteristics of each path based on the response data, and a delivery parameters engine that receives a request for delivery of a data load from the source to the destination and determines, based on the request, delivery parameters. Furthermore, the system contains the source and a path selection engine that determines a selected path of the different paths based on the characteristics of the paths and the delivery parameters, and sends the selected data path to the source, which sends the data load along the selected path to the destination.
Abstract:
An air-conditioning apparatus control system includes connected devices each including a memory to sequentially store control data which is acquired during operation and is associated with control of the connected device. To back up the control data in the memory of the connected device, a backup destination is selected from the other connected devices included in a plurality of air-conditioning apparatuses constituting the air-conditioning apparatus control system on the basis of an available memory space in each of the other connected devices. The control data is backed up to the selected backup destination at time when it is determined that backup has no interference with communication for a normal operation in the air-conditioning apparatus control system.
Abstract:
An automation interface is provided for interacting with industrial controllers. The automation interface provides for programming, editing, monitoring and maintenance of industrial controllers programmatically from a local or remote location. The automation interface component is adapted to communicate with industrial controllers by integrating a computer process interface library into the automation interface component. The computer process interface library exposes the automation interface component to client application processes, so that the client application processes can communicate with the at least one industrial controller programmatically. The automation interface is provided with functionality for downloading, uploading and programming of control programs to the processors of the industrial controllers.
Abstract:
A big data network or system for a process control system or plant includes a big data apparatus including a data storage area configured to store, using a common data schema, multiple types of process data and/or plant data (such as configuration and real-time data) that is used in, generated by or received by the process control system, and one or more data receiver computing devices to receive the data from multiple nodes or devices. The data may be cached and time-stamped at the nodes and streamed to the big data apparatus for storage. The process control system big data system provides services and/or data analyses to automatically or manually discover prescriptive and/or predictive knowledge, and to determine, based on the discovered knowledge, changes and/or additions to the process control system and to the set of services and/or analyses to optimize the process control system or plant.
Abstract:
Some embodiments of a method for premises management networking include monitoring premises management devices connected to a gateway at a premises; controlling premises management devices connected to the gateway at the premises; receiving, at the premises, an uplink-initiation signal associated with a network operations center server; and in response to the uplink-initiation signal, initiating, from the gateway at the premises, communications between the gateway and the network operations center server; and communicating, during the communications between the gateway and the network operations center server, information associated with the premises management devices.
Abstract:
The present invention relates to a processing module for a modular automation system, for instance a modular stored-programmable control, in which the automation system includes a central unit and peripheral units such as input/output modules, subordinate to the central unit. The peripheral units can be coupled to each other via a device bus. A processing module comprises a processor, a memory, a blockable bus coupling element which can be coupled to the device bus, and a blockable central unit coupling element which can be coupled to the central unit, all of which are connected to each other via a module bus that is internal in the processing module. The processing module has a communication interface which is connected with the processor. In this way the central unit can be relieved to a considerable extent of communication activity.
Abstract:
Methods and systems for managing a premises are described. A gateway device may monitor a plurality of devices at a premises. A mobile device may receive, from the gateway device, data indicative of one or more events of the plurality of devices. The mobile device may output a user interface comprising status information associated with the plurality of devices. The user interface may allow for user input to generate control operations associated with the premises.