Abstract:
A robot system comprises a robot provided with a robot arm and a robot hand, and a control device for controlling the motion of the robot, wherein a permitted area where a teaching operation for the robot hand should be permitted is preset within a maximum area which the robot hand can reach. The control device is provided with a judging part which judges if the robot hand as a whole is present in the permitted area, based on robot hand position information, and a teaching operation restricting part which permits a teaching operation for the robot hand when it is judged that the robot hand as a whole is present in the permitted area and prohibits a teaching operation for the robot hand when it is judged that the robot hand as a whole is not present in the permitted area.
Abstract:
A robot control apparatus, which causes a robot to use its hand to grasp and move a workpiece detected by a workpiece detection unit, has a storage unit and a control unit. A non-interference area in which no interference occurs between the hand and a surrounding environment and a work area through which the hand potentially passes when grasping the workpiece are stored as a parameter in the storage unit. The control unit computes, based on a position and an attitude of the detected workpiece and the parameter regarding the work area, a position and an orientation of the work area with reference to the position of the detected workpiece. Moreover, the control unit computes an overlap between a surrounding environment area excluding the non-interference area and the work area having the computed position and orientation. If there is the overlap, the control unit executes a predetermined operation.
Abstract:
A surgical apparatus includes a surgical device, configured to be manipulated by a user to perform a procedure on a patient, and a computer system. The computer system is programmed to create a representation of an anatomy of a patient; to associate the anatomy and a surgical device with the representation of the anatomy; to manipulate the surgical device to perform a procedure on a patient by moving a portion of the surgical device in a region of the anatomy; to control the surgical device to provide at least one of haptic guidance and a limit on manipulation of the surgical device, based on a relationship between the representation of the anatomy and at least one of a position, an orientation, a velocity, and an acceleration of a portion of the surgical device; and to adjust the representation of the anatomy in response to movement of the anatomy during the procedure.
Abstract:
A robot control apparatus, which causes a robot to use its hand to grasp and move a workpiece detected by a workpiece detection unit, has a storage unit and a control unit. A non-interference area in which no interference occurs between the hand and a surrounding environment and a work area through which the hand potentially passes when grasping the workpiece are stored as a parameter in the storage unit. The control unit computes, based on a position and an attitude of the detected workpiece and the parameter regarding the work area, a position and an orientation of the work area with reference to the position of the detected workpiece. Moreover, the control unit computes an overlap between a surrounding environment area excluding the non-interference area and the work area having the computed position and orientation. If there is the overlap, the control unit executes a predetermined operation.
Abstract:
A movement control apparatus for a machine tool includes a travel boundary arc setting unit and a control unit. The machine tool includes a tool post that supports plurality of tools, and a drive unit adapted to relatively move at least one of the tool post and the workpiece in a direction of a first axis and in a direction of a second axis that intersects the first axis to change a tool. The travel boundary arc setting unit sets an arc so that the arc is inscribed in the first and the second axes and an axial center of the workpiece passes through a position distant from a corner portion of a tool by a radius of the workpiece. The control unit is adapted to control the drive unit so that the workpiece travels along a travel locus outside the arc while changing a tool.
Abstract:
An offline teaching apparatus for generating, in an offline mode, a robot operation relating to tracking and working relative to a workpiece traveling along a carrier route. The apparatus includes a model-image generating section for generating images of a carrier-route model, a workpiece model and a robot model; an indicator generating section for generating a base-point indicator, and upstream-end and downstream-end indicators defining a spatial range for performing the robot operation; a display section for displaying, on a screen, the images of the carrier-route model, the workpiece model and the robot model, together with the base-point indicator, the upstream-end indicator and the downstream-end indicator; a carrying-operation simulating section for causing the workpiece model to simulate a workpiece traveling motion along the carrier-route model; and a robot-operation simulating section for causing the robot model to simulate the robot operation, during a period from an instant the workpiece model passes by the upstream-end indicator until an instant the workpiece model arrives at the downstream-end indicator.
Abstract:
In a master-slave manipulator system capable of presenting an obstacle and a limit to an operating range as a force feed-back with no use of a motor in an operation input device and having high reliability, a small size and good operability, the system comprises a manipulator having an arm, an operation input device for moving the arm of the manipulator, and a controller for controlling the manipulator and the operation input device, and the operation input device is provided on joints with a mode change-over mechanism having three modes: of which, in a first mode, power is not transmitted; in a second mode, power is transmitted in one direction and is not transmitted in a reverse direction thereof; and in a third mode, power is transmitted in the reverse direction and is not transmitted in the one direction, selecting one of the above modes and changing over from one mode to the selected mode.
Abstract:
A surgical apparatus includes a surgical device, configured to be manipulated by a user to perform a procedure on a patient, and a computer system. The computer system is programmed to implement control parameters for controlling the surgical device to provide at least one of haptic guidance to the user and a limit on user manipulation of the surgical device, based on a relationship between an anatomy of the patient and at least one of a position, an orientation, a velocity, and an acceleration of a portion of the surgical device, and to adjust the control parameters in response to movement of the anatomy during the procedure.
Abstract:
A system and method for controlling an industrial robot wherein an adjustable optional region of a robot movement which differs from an inherent movable region defining the outer limits of robot movement and which is contained within the inherent movable region, is set by loading numerical data representing the shape of a workpiece to be handled by the robot, into a controller for the robot. During operation, the objective of the robot is controlled by the numerical data and thereby limited in movement to the optional region within said inherent movable region. The operational region is set in a rectangular coordinate system different from the operating coordinate system inherent to the robot, thereby defining a robot movement space which can be visualized and readily discerned by an operator.
Abstract:
An information processing apparatus includes a display controller that, when position information on a movable object is changed, changes a display size of an image associated with the movable object and displays the image.