Abstract:
A substrate, which has a high thermal conductivity material layer having a thermal conductivity of at least 10 W/cm.multidot.K and which has a cooling medium flow path on or in the high thermal conductivity material layer, has a high heat-dissipating property.
Abstract:
An optical collector (15) for collecting extreme ultraviolet radiation or EUV light generated at a central EUV production site comprises a reflective shell (25). To cope with thermal loading of the collector and avoid deformations, the reflective shell (25) is mounted on a support structure (24), such that a cooling channel (29) is established between the back side of the reflective shell (25) and the support structure (24), the thickness of the reflective shell (25) is substantially reduced, such that the convective heat transfer between the back side of the reflective shell (25) and a cooling medium (26) flowing through the cooling channel (29) dominates the process of removing heat from the reflective shell (25) with respect to heat conduction, and a cooling circuit (33) is connected to the cooling channel (29); to supply a cooling medium (26) to the cooling channel (29) with a controlled coolant pressure and/or mass flow.
Abstract:
Provided is an apparatus for generating extreme ultraviolet light. The apparatus includes a collector mirror unit, a gas supply unit configured to supply a processing gas to the collector mirror unit, a gas supply nozzle arranged in at least one area of the collector mirror unit and configured to supply the processing gas to a surface of the collector mirror unit, and a controller configured to adjust a shape of a spray hole of the gas supply nozzle. The shape of the spray hole may be changed according to a control operation of the controller.
Abstract:
A device for UV curing a coating or printed ink on a workpiece such as an optical fiber comprises dual elliptical reflectors arranged to have a co-located focus. The workpiece is centered at the co-located focus such that the dual elliptical reflectors are disposed on opposing sides of the workpiece. Two separate light sources are positioned at a second focus of each elliptical reflector, wherein light irradiated from the light sources is substantially concentrated onto the surface of the workpiece at the co-located focus.
Abstract:
Grazing incidence collectors (GICs) for extreme ultraviolet (EUV) and X-ray radiation sources, such as laser produced plasma (LPP) sources, are disclosed. Source-collector systems comprising GICs and LPP sources are also disclosed. A laser beam is directed along the collector axis to a fuel target to form the LPP source, and the collector is arranged to collect the radiation and reflect it to an intermediate focus. The collector may include one or more grazing-incidence mirrors, and these mirrors may be electroformed. lithography systems that employ the source-collector systems as disclosed herein.
Abstract:
A mirror includes a mirror base provided with a flow channel through which a heat medium passes for cooling the mirror. The flow channel includes a buffer tank portion for adjusting a flow rate of the heat medium in the flow channel. A reflective film is provided on the mirror base.
Abstract:
An optical element includes a first layer that includes a first material, and is configured to be substantially reflective for radiation of a first wavelength and substantially transparent for radiation of a second wavelength. The optical element includes a second layer that includes a second material, and is configured to be substantially absorptive or transparent for the radiation of the second wavelength. The optical element includes a third layer that includes a third material between the first layer and the second layer, and is substantially transparent for the radiation of the second wavelength and configured to reduce reflection of the radiation of the second wavelength from a top surface of the second layer facing the first layer. The first layer is located upstream in the optical path of incoming radiation with respect to the second layer in order to improve spectral purity of the radiation of the first wavelength.
Abstract:
A cooled spider for grazing-incidence collectors includes an outer ring, an inner ring and spokes that mechanically and fluidly connect the inner and outer rings. Cooling channels in the outer and inner rings and in the spokes define a general cooling-fluid flow path through the spider. The general cooling-fluid flow path has input and output points located substantially 180° apart so that the flow path diverges at the input point into two branch flow paths that flow in opposite directions through the spider, and then converge at the output point. Input and output cooling fluid manifolds are fluidly connected to the outer ring at the input and output points and serve to flow cooling fluid over the cooling-fluid flow path.
Abstract:
A reflector for an ultraviolet lamp can be used in a substrate processing apparatus. The reflector comprises a longitudinal strip extending the length of the ultraviolet lamp. The longitudinal strip has a curved reflective surface and comprises a plurality of through holes to direct a coolant gas toward the ultraviolet lamp. A chamber that uses an ultraviolet lamp module with the reflector, and a method of ultraviolet treatment are also described.
Abstract:
Grazing incidence collectors (GICs) for extreme ultraviolet (EUV) and X-ray radiation sources, such as laser produced plasma (LPP) sources, are disclosed. Source-collector systems comprising GICs and LPP sources are also disclosed. A laser beam is directed along the collector axis to a fuel target to form the LPP source, and the collector is arranged to collect the radiation and reflect it to an intermediate focus. The collector may include one or more grazing-incidence mirrors, and these mirrors may be electroformed. lithography systems that employ the source-collector systems as disclosed herein.