Abstract:
A method of and an apparatus for forming a multi-layer film, includes: a thickness control device for controlling an optical film thickness or a thickness of each of the layers of the multi-layer film; a multi-layer film monitoring substrate on which the multi-layer film is formed; a measurement device for measuring the optical characteristics of the multi-layer film formed on the multi-layer film monitoring substrate; and a processing device which processes the results obtained by the measurement device so as to feed the processed results back to the thickness control device.
Abstract:
An apparatus for forming a thin film irradiates an electron beam on a vaporizable substance held in a crucible. A pair of electromagnets are disposed in coplanar relation and at right angles to each other to generate a magnetic field which deflects the electron beam. An alternating current is applied to the electromagnets to generate the magnetic field, and the magnitude and frequency of the current are controlled so as to scan the electron beam in a circular pattern on the vaporizable substance.
Abstract:
The present invention relates to a ceramic coating and ion beam mixing apparatus for improving corrosion resistance, and a method of reforming an interface between a coating material and a base material. In samples fabricated using the coating and ion beam mixing apparatus, adhesiveness is improved, and the base material is reinforced, thereby improving resistance to thermal stress at high temperatures and high-temperature corrosion resistance of a material to be used in a sulfuric acid decomposition apparatus for producing hydrogen.
Abstract:
An apparatus for coating substrates with a coating material is disclosed. The apparatus includes a frame and a crucible arrangement including a first crucible and a second crucible disposed on the frame. Only one first shaft is associated with the first crucible and only one second shaft is associated with the second crucible, where the only one first and second shafts are disposed in the frame beneath the first and second crucibles, respectively. Only one first lifting device is associated with the only one first shaft and only one second lifting device is associated with the only one second shaft, where the only one first and second lifting devices are disposed in the frame. The only one first and second shafts and the only one first and second lifting devices are laterally displaceable with the frame.
Abstract:
The invention relates to a device for producing an electron beam, comprising a housing (12), which delimits a space (13) that can be evacuated and has an electron beam outlet opening; an inlet (16) for feeding a process gas into the space (13) that can be evacuated; a planar cathode (14) and an anode (15), which are arranged in the space (13) that can be evacuated and between which a glow-discharge plasma can be produced by means of an applied electrical voltage, wherein ions can be accelerated from the glow-discharge plasma onto the surface of the cathode (14). The cathode has a first part (14a) made of a first material, which forms a centrally arranged first surface region of the cathode (14), and a second part (14b) made of a second material, which forms a second surface region of the cathode (14) that encloses the first surface region. The first material can be heated by the impingement with accelerated ions to a temperature at which electrons escape the first material predominantly due to thermionic emission.
Abstract:
An electron beam vapor deposition apparatus includes a coating chamber having a first chamber section with a first coating zone for depositing a first coating and a second chamber section with a second coating zone for depositing a second coating. At least one electron beam source is associated with the first chamber section and the second chamber section. A first crucible is adjacent to the first coating zone for presenting a first source coating material, and a second crucible is adjacent to the second coating zone for presenting a second source coating material. A transport is operative to move a work piece between the first coating zone of the first chamber section and the second coating zone of the second chamber section.
Abstract:
A vaporizing device is provided, wherein an elongated pot having material to be vaporized is impinged upon by an electron beam, preferably via several electron guns. Each electron gun is responsible for a certain section of the pot. The electron beam is guided over the melt in a pendular manner. For this purpose, a first magnetic deflecting unit is provided, which produces a variable parallel displacement of the electron beam. In order to achieve this, two magnetic fields are provided, the magnetic field boundaries of which form a type of lens system, wherein the outlet side of the first magnetic field is convex and the inlet side of the second magnetic field is concave. In order to deflect the electron beam into the pot, a second magnetic deflecting unit is provided, the magnetic field of which can be moved synchronously with the beam displacement parallel to the pot.
Abstract:
An electron gun evaporation apparatus capable of efficiently using an evaporation source includes an electron beam position controller which determines, as an applicable range, a range within which the distribution of the film thickness growth rate is almost constant in each scanning direction of an electron beam to be applied to an evaporation source in a crucible for the irradiation position of the electron beam, on the basis of information pertaining to the electron beam irradiation position and the film thickness growth rate in the electron beam irradiation position.
Abstract:
An electron beam vapor deposition apparatus includes a coating chamber having a first chamber section with a first coating zone for depositing a first coating and a second chamber section with a second coating zone for depositing a second coating. At least one electron beam source is associated with the first chamber section and the second chamber section. A first crucible is adjacent to the first coating zone for presenting a first source coating material, and a second crucible is adjacent to the second coating zone for presenting a second source coating material. A transport is operative to move a work piece between the first coating zone of the first chamber section and the second coating zone of the second chamber section.
Abstract:
An electron beam physical vapor deposition (EBPVD) apparatus and a method for using the apparatus to produce a coating material (e.g., a ceramic thermal barrier coating) on an article. The EBPVD apparatus generally includes a coating chamber that is operable at elevated temperatures and subatmospheric pressures. An electron beam gun projects an electron beam into the coating chamber and onto a coating material within the chamber, causing the coating material to melt and evaporate. An article is supported within the coating chamber so that vapors of the coating material deposit on the article. The operation of the EBPVD apparatus is enhanced by the inclusion or adaptation of one or more mechanical and/or process modifications, including those necessary or beneficial when operating the apparatus at coating pressures above 0.010 mbar.