摘要:
N.sup.2 acoustic wave devices (A,B,S,T; where N is an integer greater than unity) with substantially the same electrical impedance and transfer characteristics at a given operating frequency are electrically connected in a parallel-series arrangement which has substantially the same electrical impedance and transfer characteristics as any one of the individual N.sup.2 devices, but an increased active device area. The increased active area reduces stress and alleviates acoustically-induced migration in the metal of, for example, transducer electrode fingers (6,7) of resonators at high power levels. The parallel-series arrangement consists of N groups, each of which comprises N devices (A,B or S,T), the corresponding pairs of terminals (4,54 and 54,55) of which are connected in series. Some terminals (54 or 55) may be common to two or more devices and some devices may have merged transducers in which the electrode fingers (6 or 7) of one transducer are a longitudinal extension of the fingers of a parallel transducer. In the case of multi-port devices the input and output terminal pairs may be differently grouped as regards the individual devices to which they belong.
摘要:
The invention relates to elastic surface-wave structures. The elastic surface wave structure in accordance with the invention comprises a non magnetic substrate and a surface wave transducer containing at least one emissive zone situated in a deposited layer of magnetostrictive material subjected to an alternating magnetic field and to a magnetic polarization field.
摘要:
A surface wave apparatus which comprises an insulation substrate having a smooth surface; a surface wave conversion interdigitated electrode evaporated on the smooth surface of the insulating substrate; a piezoelectric plate, on the smooth surface of which the insulation substrate is mounted at a prescribed space in contact with the electricity-surface wave conversion interdigitated electrode; an insulation liquid layer provided between the smooth surface of the piezoelectric plate and the electricity-surface wave conversion interdigitated electrode as well as between the smooth surface of the piezoelectric plate and the smooth surface of the insulation substrate.
摘要:
An acoustic resonator includes a piezoelectric layer on a substrate and an interdigital electrode structure on the piezoelectric layer. The interdigital electrode structure includes a first bus bar, a second bus bar, a first set of electrode fingers, and a second set of electrode fingers. The first bus bar and the second bus bar extend parallel to one another along a length of the interdigital electrode structure. The first set of electrode fingers are coupled to the first bus bar and extend to a first apodization edge. The second set of electrode fingers are coupled to the second bus bar and extend to a second apodization edge. The first set of electrode fingers and the second set of electrode fingers are interleaved. At least one of the first apodization edge and the second apodization edge provides a wave pattern along the length of the interdigital electrode structure.
摘要:
An acoustic wave device includes a piezoelectric body including first and second main surfaces facing each other, an IDT electrode provided on the first main surface of the piezoelectric body and including electrode fingers, a high acoustic velocity member on the second main surface side of the piezoelectric body, in which an acoustic velocity of a propagating bulk wave is higher than an acoustic velocity of an acoustic wave propagating through the piezoelectric body, and a first dielectric film provided on an upper surface of the electrode fingers, in which a portion where a dielectric is not present is provided between the electrode fingers of the IDT electrode.
摘要:
An acoustic wave device is disclosed. The acoustic wave device includes a piezoelectric layer, an interdigital transducer electrode positioned over the piezoelectric layer, and an anti-refection layer over a conductive layer of the interdigital transducer electrode. The conductive layer can include aluminum, for example. The anti-reflection layer can include silicon. The anti-reflection layer can be free from a material of the interdigital transducer electrode. The acoustic wave device can further include a temperature compensation layer positioned over the anti-reflection layer in certain embodiments.
摘要:
Embodiments disclosed herein include diagnostic substrates and methods of using the diagnostic substrates to extract plasma parameters. In an embodiment, a diagnostic substrate comprises a substrate and an array of resonators across the substrate. In an embodiment, the array of resonators comprises at least a first resonator with a first structure and a second resonator with a second structure. In an embodiment, the first structure is different than the second structure.
摘要:
A radio-frequency module includes a module substrate, an inductor, and an acoustic wave filter. The inductor overlaps at least a portion of the acoustic wave filter when seen in a plan view from the normal direction of the module substrate. The inductor includes first and second coils connected in series. Each of the first and second coils is a spiral or helical coil that is wound with more than one turn. At least a portion of the first coil overlaps the second coil when seen in a plan view from the normal direction of the module substrate. A direction of a magnetic field generated by the first coil is opposite to a direction of a magnetic field generated by the second coil.
摘要:
Disclosed herein are embodiments of a ladder-type filter comprising a plurality of series arm resonators and a plurality of parallel arm resonators, at least one of the plurality of series arm resonators including a piezoelectric substrate and an interdigital transducer electrode disposed on the piezoelectric substrate, an aperture W1 of the interdigital transducer electrode being configured to be less than 13λ, where λ is a wavelength of a surface acoustic wave excited by the interdigital transducer electrode. The relationship between the aperture W1 and the wavelength λ can be W1 6λ.