摘要:
Tri-state inverter comprising: a n-TFET and a p-TFET, the drain of the n-TFET being connected to the drain of the p-TFET and to an output of the tri-state inverter, the gates of the n-TFET and p-TFET being connected to an input of the tri-state inverter; a control circuit able to apply a first control voltage on the source of the n-TFET and a second control voltage on the source of the p-TFET, the values of the first and second control voltages being positive or zero; and wherein, when the tri-state inverter is intended to work as an inverter, the value of the first control voltage is lower than the value of the second control voltage, and when the tri-state inverter is intended to be tri-stated, the value of the first control voltage is higher than the value of the second control voltage.
摘要:
A semiconductor device includes a first semiconductor chip operating at a first power supply voltage and a second semiconductor chip operating at a second power supply voltage lower than the first power supply voltage to supply the second power supply voltage to the first semiconductor chip. The semiconductor chips according to the present invention are conveniently used for fabrication of the semiconductor device. The first semiconductor chip includes an output circuit including a first transistor and a second transistor, interconnected in series and turned on or off complementarily. The output circuit outputs a signal to a first external output terminal. The first semiconductor chip also includes a third transistor connected in series with the first and second transistors and having a gate electrode connected to a second output terminal. The entire chip area is reduced, as compared with the case where plural semiconductor chips, operated at different operating voltages, are interconnected and used as such in a semiconductor device provided with an input/output buffer operating at a voltage different from the respective operating voltages resulting in an increased chip area.
摘要:
A semiconductor device includes a first semiconductor chip operating at a first power supply voltage and a second semiconductor chip operating at a second power supply voltage lower than the first power supply voltage to supply the second power supply voltage to the first semiconductor chip. The first semiconductor chip includes an output circuit including a first transistor and a second transistor, interconnected in series and turned on or off complementarily. The output circuit outputs a signal to a first external output terminal. The first semiconductor chip also includes a third transistor connected in series with the first and second transistors and having a gate electrode connected to a second output terminal.
摘要:
A semiconductor device includes a first semiconductor chip operating at a first power supply voltage and a second semiconductor chip operating at a second power supply voltage lower than the first power supply voltage to supply the second power supply voltage to the first semiconductor chip. The semiconductor chips according to the present invention are conveniently used for fabrication of the semiconductor device. The first semiconductor chip includes an output circuit including a first transistor and a second transistor, interconnected in series and turned on or off complementarily. The output circuit outputs a signal to a first external output terminal. The first semiconductor chip also includes a third transistor connected in series with the first and second transistors and having a gate electrode connected to a second output terminal. The entire chip area is reduced, as compared with the case where plural semiconductor chips, operated at different operating voltages, are interconnected and used as such in a semiconductor device provided with an input/output buffer operating at a voltage different from the respective operating voltages resulting in an increased chip area.
摘要:
Systems and methods are described for a contention-free single-wire latch controller that includes first and second bidirectional signal pins (e.g., the L and R pins in the FIGS), a latch enable output pin (or signal), E, and a decision element (such as a NAND or a NOR gate). A first driving transistor may be coupled between the first bidirectional signal pin and a power rail. A second driving transistor may be coupled between the second bidirectional signal pin and the power rail. A first half-latch may be coupled to the first bidirectional signal pin. A second half-latch may be coupled to the second bidirectional signal pin.