Abstract:
An optical channel monitor (OCM) or filter for analyzing an incident light carrying a number of narrow band signal channels such as WDM or DWDM channels. The OCM or filter use an acousto-optic tunable filter to receive and refract from an incident light a refracted light such that the refracted light contains a test channel with a center frequency &ngr;0. A first birefringent element is provided for filtering from the refracted light a first polarized light and a second polarized light orthogonal to the first polarized light. The transmission curves are engineered such that the transmissions of the first and second polarized light are substantially equal at the center frequency &ngr;0 of the test channel. The OCM or filter has a second birefringent element for filtering from the first polarized light a first polarized portion and a second polarized portion. The transmission curves of the second birefringent element are set such that the transmissions of the first and second polarized portions are substantially equal at a first offset &dgr;1&ngr; from the center frequency &ngr;0.
Abstract:
Imaging apparatus and method which uses change of polarization state of a light beam passed through a total internal reflection structure by a single reflection at a TIR surface in which a specimen is placed in the evanescent field associated with the total internal reflection of the light beam, the specimen being the subject of biological, chemical or genetic investigation.
Abstract:
An ellipsometer capable of generating a small beam spot is disclosed. The ellipsometer includes a light source for generating a narrow bandwidth probe beam. An analyzer is provided for determining the change in polarization state of the probe beam after interaction with the sample. A lens is provided having a numerical aperture and focal length sufficient to focus the beam to a diameter of less than 20 microns on the sample surface. The lens is formed from a graded index glass wherein the index of refraction varies along its optical axis. The lens is held in a relatively stress free mount to reduce stress birefringence created in the lens due to changes in ambient temperature. The ellipsometer is capable of measuring features on semiconductors having a dimensions as small as 50×50 microns.
Abstract:
An electromagnetic wave analyzer determines intensity and phase characteristics of an electromagnetic wave such as an ultrashort laser pulse. The analyzer passes the electromagnetic wave through a Fresnel biprism that produces a probe pulse and a gated pulse. The probe pulse and the gated pulse intersect and interact in a nonlinear optical medium, such as a second harmonic generating (SHG) crystal. The nonlinear optical medium then time gates and frequency filters the electromagnetic wave producing an input pulse gated signal. A lens maps delay in a horizontal direction and crystal output angle in a vertical direction. A camera detects the output of the lens and creates a spectrogram of the electromagnetic wave.
Abstract:
An optical measurement arrangement includes an ellipsometer (45) and a device for ascertaining and correcting directional deviations between the line normal to the specimen surface and the angle bisector (25) between the incident and return beams (23, 24) of the ellipsometer (45). A measurement arrangement includes a mirror objective and a device for ascertaining directional deviations between the line normal to the specimen surface and the optical axis of the mirror objective, which has a deflection element in the unused aperture space of the mirror objective. A direction monitoring beam (30) is directed onto the specimen (P). An optical element for imaging the return reflection of the direction monitoring beam (30) onto an area detector that is connected to an evaluation circuit (46) is also provided. Positioning commands for a specimen stage (12) are available at the outputs of the evaluation circuit (46). By way of the control commands, the specimen stage is caused to tilt until the return reflection on the area detector has assumed the position at which the direction of the normal line corresponds to the direction of the angle bisector (25).
Abstract:
A method of two interferometric configurations to measure bending of an extended element. The measurement arm of each configuration is a long optical fiber. A first interferometric configuration has a segment of its measurement arm attached to one side of the element. The second interferometric configuration has a segment of its measurement arm attached to one side of the element and another segment of its measurement arm attached to an opposing side of the element. The two configurations are used to obtain two sets of interference fringe measurement values. If one set is subtracted from the other, the result is intensity differential values that indicate only the effects of bending and not of temperature or pressure. Variations of the method can be used for irregularly shaped elements.
Abstract:
In an apparatus for evaluating an anisotropic thin film, an optical system generates a light beam having a predetermined diameter and polaraization state to project the light beam as incident light into a thin film sample corresponding to the anisotropic thin film. An analyzer is disposed at an optically down stream side of the thin film sample. At an optically down stream side of the analyzer, a two-dimensional photo-intensity detector is disposed to detect reflected light, obtained from the thin film sample, through the analyzer. The detector produces a light intensity distribution. On the basis of the light intensity distribution, an evaluating unit evaluates an inplane distribution of an optical anisotropy of the thin film sample.
Abstract:
By setting the linearly polarized light with normal incidence on the liquid crystal sample 3 and rotating the liquid crystal sample 3 on a rotation stage 7 within plane, the dependencies of the amplitude ratio as well as the optical retardation of the transmitted light on the azimuth of the liquid crystal sample, with respect to the polarization direction of the incident light, are measured. From these measured results, a liquid crystal pretilt angle is determined.
Abstract:
A process control method to monitor ion implantation process conditions by measuring the optical properties of a masking material is provided. A patterned masking material may protect underlying regions of a semiconductor substrate from undergoing a chemical or physical change during an ion implantation process. The patterned masking material, however, may also undergo a chemical or physical change during processing. The chemical or physical changes to the masking material during such processing may also cause the optical properties of the material to change. The optical properties of the masking material may be used to determine the concentration of ions implanted into the semiconductor substrate.
Abstract:
Methods and apparatus for screening diverse arrays of materials are provided. In particular, techniques for rapidly characterizing compounds in arrays of materials in order to discover and/or optimize new materials with specific desired properties are provided. The substrate can be screened for materials having useful properties, and/or the resulting materials can be ranked, or otherwise compared, for relative performance with respect to useful properties or other characterizations. In particular, systems and methods are provided for screening a library of magnetic materials for their bulk magnetization, saturation magnetization, and coercivity by imaging their individual optical Kerr rotation, screening a library of dielectric materials for their dielectric coefficients by imaging their individual electro-optical rotation and screening a library of luminescent materials by imaging their individual luminescent properties under a variety of excitation conditions. Optical or visible luminescence systems are also provided as well as their application to screening libraries of different materials.