Abstract:
Embodiments in accordance with the present disclosure are directed to apparatuses used for reaction screening and optimization purposes. An example apparatus includes a plurality of reaction vessels, a dispensing subsystem, at least one reactor module, an analysis subsystem, an automation subsystem, and control circuitry. The dispensing subsystem delivers reagents to the plurality of reaction vessels for a plurality of reaction mixtures having varied reaction conditions. The at least one reactor module drives a plurality of reactions within the plurality of reaction vessels. The analysis subsystem analyzes compositions contained in the plurality of reaction vessels. The automation subsystem selectively moves the plurality of reaction vessels from a location proximal to the dispensing subsystem to the at least one reactor module based on experimental design parameters. And, the control circuitry identifies optimum reaction conditions for a target end product based on the analysis.
Abstract:
Embodiments in accordance with the present disclosure are directed to apparatuses used for reaction screening and optimization purposes. An example apparatus includes a plurality of reaction vessels, a dispensing subsystem, at least one reactor module, an analysis subsystem, an automation subsystem, and control circuitry. The dispensing subsystem delivers reagents to the plurality of reaction vessels for a plurality of reaction mixtures having varied reaction conditions. The at least one reactor module drives a plurality of reactions within the plurality of reaction vessels. The analysis subsystem analyzes compositions contained in the plurality of reaction vessels. The automation subsystem selectively moves the plurality of reaction vessels from a location proximal to the dispensing subsystem to the at least one reactor module based on experimental design parameters. And, the control circuitry identifies optimum reaction conditions for a target end product based on the analysis.
Abstract:
The present subject matter relates to systems and methods for the formulation of inks from stock solutions in which a liquid handler is configured to draw samples from a plurality of solution components and mix the components together to create one or more ink formulations, and a dispensing robot is configured to transfer the one or more ink formulations to a common substrate to form one or more material samples or a coating element in communication with the liquid handler is configured to transfer the one or more ink formulations to a common substrate to form one or more material samples. A controller in communication with each of the liquid handler and the dispensing robot can be configured to coordinate the creation and transfer of the one or more ink formulations. In addition, the one or more material samples can be analyzed using one or more characterization instrument configured to characterize the material samples on the common substrate.
Abstract:
Embodiments are directed towards methods and systems of depositing a uniform test-pathogen mixture onto a test article for testing the sterilization efficacy of an electromagnetic radiation or other sterilization process. The system includes a holding mechanism configured to removably secure the test article to the system. The system also includes a test-pathogen dispenser configured to uniformly deposit the test-pathogen mixture onto a reference surface of the test article. The system is structured so that at least one of the test article and the test-pathogen dispenser moves relative to the other. A plurality of test-pathogen mixture droplets or lines is deposited onto the reference surface in a predetermined test-pathogen pattern, such as, for example, a plurality of rows and columns of droplets. A distance from a dispenser tip of the test-pathogen dispenser to the reference surface of the test article may be determined to help maintain consistency between test-pathogen mixture droplets or lines.
Abstract:
A wafer having a plurality of dies (also called array chips) on the wafer, the die having an electrode to generate a deprotecting reagent, a working electrode to electrochemically synthesize a material, a confinement electrode adjacent to the working electrode to confine reactive reagents, and a die pad, wherein die pads of the plurality of dies are interconnected on the wafer to electrochemically synthesize the material in parallel on a plurality of working electrodes is disclosed. Also, a method for wafer-scale manufacturing of a plurality of dies and a method for electrochemically synthesizing a material in parallel on a plurality of dies on a wafer are disclosed.
Abstract:
A slotted pin tool, a delivery system containing the pin tool, a substrate for use in the system and methods using the pin tool and system are provided. The slotted pin tool contains a plurality of pins having slotted ends designed to fit around each loci of material deposited on a surface, such as a microarray, without contacting any of the deposited material. Sample is delivered by contacting the pin tool with the surface; the amount delivered is proportional to the velocity of the pin tool as it contacts the surface or the velocity of the liquid when movement of the pin is halted.
Abstract:
Methods for forming cell arrays of multiple cell samples arranged substantially in a monolayer on a single substrate particularly suited for diagnostic analysis are disclosed. The cell arrays are formed with a high-speed dispensing apparatus capable of dispensing small volumes in precise, complex patterns. Also disclosed are substrates upon which cell arrays may be formed, and methods for conducting diagnostic analyses on the formed cell arrays.
Abstract:
A method of preparing a substrate with a composition comprising (i) an organoborane initiator and (ii) a radical curable component disposed thereon includes the step of depositing the composition onto the substrate wherein at least one of (i) the organoborane initiator and (ii) the radical curable component is deposited onto the substrate in the form of a gradient pattern. An article comprises the substrate and the gradient pattern formed on the substrate. The gradient pattern is formed from a developed composition comprising the reaction product of (i) the organoborane initiator and (ii) the radical curable component. By forming the gradient pattern on the substrate, combinatorial and high-throughput methods of generating and testing the developed composition are possible, which enable characterization of the developed composition for various physical and chemical properties.
Abstract:
The invention relates to the clinically intelligent design of diagnostic devices (such as microarrays) and methods of making and using such devices in differential diagnoses of specific clinical symptoms or sets of symptoms. In one aspect, the devices include various probes used to perform parallel screening of a number of analytes. The probes are clustered on the devices based on known clinical presentations of symptoms associated with specific diseases and disorders.