Abstract:
A dual-band infrared detector is provided. The dual-band infrared detector includes a first absorption layer, a barrier layer coupled to the first absorption layer, and a second absorption layer coupled to the barrier layer. The first absorption layer is sensitive to only a first infrared wavelength band and the second absorption layer is sensitive to only a second infrared wavelength band that is different from the first infrared wavelength band. The dual-band infrared detector is capable of detecting the first wavelength band and the second wavelength band by applying a first bias voltage of a first polarity to the first absorption layer and by applying a second bias voltage of a second polarity that is opposite the first polarity to the second absorption layer, wherein the first bias voltage and the second bias voltage each have a magnitude of less than about 500 mV.
Abstract:
A photoluminescent temperature sensing device and method utilizing a semi-conductor optical device adapted to operate as both a light-emitting device and a light detection device. The optical device emits a pulse of incident light, producing photoluminescent light that is received at the optical device. Signal information associated with a temperature-dependent characteristic of the photoluminescent light is created and temperature information if obtained from the signal information.
Abstract:
A dialysis system that includes a dialysis machine, a tube connected to the dialysis machine, and a sensor system. The sensor system includes a head having a slot configured to receive the tube and a plurality of sensors secured to the head adjacent the slot. At least one of the plurality of sensors includes a light emitting element configured to transmit light through the tube when the tube is disposed in the slot and a light receiving element configured to receive the light emitted by the light emitting element after the light passes trough the tube.
Abstract:
The present invention relates to a bolometer (10) comprising a substrate (12), a first membrane (16) formed by removing a first sacrificial layer (14) on the substrate (12), the first membrane (16) comprising a measuring element (18) for measuring an amount of incident electromagnetic radiation (R), a second membrane (22) formed by removing a second sacrificial layer (20) on the first membrane (16), the second membrane (22) enclosing the first membrane (16), a first cavity (24) formed between the substrate (12) and the first membrane (16), and a second cavity (26) formed between the first membrane (16) and the second membrane (22). The present invention further relates to a method of manufacturing a bolometer, as well as a thermographic image sensor and medical device.
Abstract:
According to the present invention, an electromagnetic wave measurement device includes an electromagnetic wave output device, an electromagnetic wave detector, a relative position changing unit, a delay period recording unit, a phase deriving unit, a delay-corrected phase deriving unit, a sinogram deriving unit, and an image deriving unit. The electromagnetic wave output device outputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a device under test and a container storing at least a part of the device under test. The electromagnetic wave detector detects the electromagnetic wave which has transmitted through the device under test. The relative position changing unit changes a relative position of an intersection at which an optical path of the electromagnetic wave transmitting through the device under test and the device under test intersect with respect to the device under test. The delay period recording unit records a delay period of the electromagnetic wave caused by a transmission of the electromagnetic wave through the container. The phase deriving unit that derives, based on a detected result by the electromagnetic wave detector, a phase in the frequency domain of the electromagnetic wave which has transmitted through the device under test. The delay-corrected phase deriving unit that derives a delay-corrected phase obtained by subtracting an integral of the delay period with respect to the frequency from the phase. The sinogram deriving unit that derives a sinogram based on a derived result by the delay-corrected phase deriving unit. The image deriving unit derives, based on the sinogram, an image of a cross section of the device under test including the intersection.
Abstract:
In various embodiments described herein, a device comprising a light collector optically coupled to a photocell is described. The device further comprises a light turning film or layer comprising volume or surface diffractive features or holograms. Light incident on the light collector is turned by volume or surface diffractive features or holograms that are reflective or transmissive and guided through the light collector by multiple total internal reflections. The guided light is directed towards a photocell. In various embodiments, the light collector is thin (e.g., less than 1 millimeter) and comprises, for example, a thin film. The light collector may be formed of a flexible material.
Abstract:
A temperature sensor that has a thermally conducting contact with a surface that emits electromagnetic radiation in proportion to the temperature of the contact is disclosed. The sensor has a resilient member attached to the contact and configured to extend the contact toward the object to be measured. A first light waveguide is attached to the contact and is configured to transmit the electromagnetic radiation from the contact. The sensor has a guide with a bore formed therein that the first waveguide is insertable into. When the contact is moved, the first waveguide moves within the bore. A second waveguide is attached to the guide such that a variable gap is formed between the ends of the first waveguide and the second waveguide. Electromagnetic energy from the first waveguide traverses the gap and can be transmitted by the second waveguide. The guide allows the first waveguide to move with the contact in order to ensure that the contact is fully engaged with the surface of the object.
Abstract:
A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.
Abstract:
The present invention relates in general to nanoparticles exhibiting luminescence such as photostimulated luminescence or photoluminescence and optical switching processes based upon such properties, in more particular, the use of such photostimulated luminescence exhibiting nanoparticles and switching nanoparticle for optical storage apparatuses and sensors as well as methods of making and using same.
Abstract:
Thermal sensor (36) may include a thermally sensitive element (50), a first thin film electrode (52) and a second thin film electrode (54). The thermally sensitive element (50) may include a plurality of preferentially-ordered crystals. The first thin film electrode (52) may include a plurality of digits (53) in communication with the thermally sensitive element (50). The digits (53) of the first thin film electrode (52) may be in spaced relation with one another. The second thin film electrode (54) may include a plurality of digits (55) in communication with the thermally sensitive element (50) opposite the first thin film electrode (52). The digits (55) of the second thin film electrode (54) may be in spaced relation with one another and in spaced interposed relation with the digits (53) of the first thin film electrode (52).