Abstract:
Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft system may be used for endovascular treatment of a thoracic aortic aneurysm. The stent-graft system may comprise proximal and distal components, each comprising a graft having proximal and distal ends, where upon deployment the proximal and distal components at least partially overlap with one another to provide a fluid passageway therebetween. The proximal component may comprise a proximal stent having a plurality of proximal and distal apices connected by a plurality of generally straight portions, where a radius of curvature of at least one of the proximal apices may be greater than the radius of curvature of at least one of the distal apices. The distal component may comprise a proximal z-stent coupled to the graft, where the proximal end of the graft comprises at least scallop formed therein that generally follows the shape of the proximal z-stent. Further, the distal component may comprise at least one z-stent stent coupled to the distal end of the graft and extending distally therefrom that reduces proximal migration of the distal component.
Abstract:
An automatic wireless medical device release system may reduce the overall diameter of the medical device delivery system. The medical device delivery system may include a medical device with a looped portion at a distal end of the medical device. A capture wire may be located on a delivery tool that is distal to the medical device. The looped portion of the medical device may be attached to a bend in the capture wire. The bend in the capture wire may be maintained by a sheath covering the delivery tool. Removal of the sheath may automatically remove the bend in the capture wire, which may release the looped portion of the medical device from the capture wire.
Abstract:
A method of attaching an intravascular device to a vessel wall of a body vessel is disclosed. The attachment system includes an intravascular device and biological attachment material connected to the intravascular device. The biological attachment material is configured to attach the intravascular device to the vessel wall.
Abstract:
An endoluminal prosthesis that includes a support structure comprising a curvilinear portion having a first strut and a second strut that meet at an apex. Disposed on the support structure is an anchor with an anchor body and one or more barbs extending outwardly from the anchor body and where the anchor body comprises a multi-filar tube fits at least partially about, and conforms to the first strut, second strut, and the apex.
Abstract:
An endoluminal prosthesis system may include a main graft and an extension graft. The main graft may include a tubular main body having a sidewall, open proximal and distal ends, a lumen, and a fenestration in the sidewall. The extension graft may include a tubular extension body, and tubular first and second extension legs. Each of the first and second extension legs may extend from the extension body and include a lumen in fluid communication with the extension body lumen. The extension graft may be deployable within the main graft such that the extension body extends through the fenestration in the sidewall of the main body. Each of the first and second extension legs may extend outward away from the main graft. An auxiliary guide such as an auxiliary cannula and/or auxiliary guide wire may be preloaded in the extension graft and extend through the lumen of each of the second extension leg and the extension body.
Abstract:
Methods for accessing the common and internal iliac arteries and delivering and deploying an endovascular graft therein utilizing an ipsilateral approach are disclosed. A system including a pre-loaded delivery and deployment device to enable such a method to be practiced is also disclosed.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and a coiled member having proximal and distal ends and a plurality of turns disposed therebetween. At least a portion of the coiled member is secured to the outer surface of the cannula. A stent is releasably secured to a portion of the coiled member. A protective cage may encircle the coiled member.
Abstract:
An endovascular stent graft delivery device has portion to remain outside a patient in use and a proximal portion to be introduced into a patient. The proximal portion has a dilator at the proximal end and a length extending module is fastened to the dilator and extends proximally. The length extending module has a proximal end which in use extends out of the patient. The dilator has a dilator marker and the length extending module has a first and second marker at the distal and proximal ends of the length extending module. The first marker and the second marker are at the same relative circumferential position on the length extending module so that the rotational position of the elongate body within the patient can be determined.