Abstract:
A strip of sacrificial semiconductor material is formed on top of a non-sacrificial semiconductor material substrate layer. A conformal layer of the non-sacrificial semiconductor material is epitaxially grown to cover the substrate layer and the strip of sacrificial semiconductor material. An etch is performed to selectively remove the strip of sacrificial semiconductor material and leave a hollow channel surrounded by the conformal layer and the substrate layer. Using an anneal, the conformal layer and the substrate layer are reflowed to produce an optical waveguide structure including the hollow channel.
Abstract:
A method for making a semiconductor device may include forming, on a first semiconductor layer of a semiconductor-on-insulator (SOI) wafer, a second semiconductor layer comprising a second semiconductor material different than a first semiconductor material of the first semiconductor layer. The method may further include performing a thermal treatment in a non-oxidizing atmosphere to diffuse the second semiconductor material into the first semiconductor layer, and removing the second semiconductor layer.
Abstract:
Trenches are formed through a top semiconductor layer and a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A selective epitaxy is performed to form bulk semiconductor portions filling the trenches and in epitaxial alignment with the semiconductor material of a handle substrate. At least one dielectric layer is deposited over the top semiconductor layer and the bulk semiconductor portions, and is patterned to form openings over selected areas of the top semiconductor layer and the bulk semiconductor portions. A semiconductor alloy material is deposited within the openings directly on physically exposed surfaces of the top semiconductor layer and the bulk semiconductor portions. The semiconductor alloy material intermixes with the underlying semiconductor materials in a subsequent anneal. Within each of the SOI region and the bulk region, two types of semiconductor material portions are formed depending on whether a semiconductor material intermixes with the semiconductor alloy material.
Abstract:
Methods for semiconductor fabrication include forming a well in a semiconductor substrate. A pocket is formed within the well, the pocket having an opposite doping polarity as the well to provide a p-n junction between the well and the pocket. Defects are created at the p-n junction such that a leakage resistance of the p-n junction is decreased.
Abstract:
A SOI substrate layer formed of a silicon semiconductor material includes adjacent first and second regions. A portion of the silicon substrate layer in the second region is removed such that the second region retains a bottom portion made of the silicon semiconductor material. An epitaxial growth of a silicon-germanium semiconductor material is made to cover the bottom portion. Germanium is then driven from the epitaxially grown silicon-germanium material into the bottom portion to convert the bottom portion to silicon-germanium. Further silicon-germanium growth is performed to define a silicon-germanium region in the second region adjacent the silicon region in the first region. The silicon region is patterned to define a first fin structure of a FinFET of a first (for example, n-channel) conductivity type. The silicon-germanium region is also patterned to define a second fin structure of a FinFET of a second (for example, p-channel) conductivity type.
Abstract:
On a substrate formed of a first semiconductor layer, an insulating layer and a second semiconductor layer, a silicon oxide pad layer and a silicon nitride pad layer are deposited and patterned to define a mask. The mask is used to open a trench through the first semiconductor layer and insulating layer and into the second semiconductor layer. A dual liner of silicon dioxide and silicon nitride is conformally deposited within the trench. The trench is filled with silicon dioxide. A hydrofluoric acid etch removes the silicon nitride pad layer along with a portion of the conformal silicon nitride liner. A hot phosphoric acid etch removes the silicon oxide pad layer, a portion of the silicon oxide filling the trench and a portion of the conformal silicon nitride liner. The dual liner protects against substrate etch through at an edge of the trench between the first and second semiconductor layers.
Abstract:
An improved transistor with channel epitaxial silicon. In one aspect, a method of fabrication includes: forming a gate stack structure on an epitaxial silicon region disposed on a substrate, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; and growing a raised epitaxial source and drain from the substrate, the raised epitaxial source and drain in contact with the epitaxial silicon region and the gate stack structure. For a SRAM device, further: removing an epitaxial layer in contact with the silicon substrate and the raised source and drain and to which the epitaxial silicon region is coupled leaving a space above the silicon substrate and under the raised epitaxial source and drain; and filling the space with an insulating layer and isolating the raised epitaxial source and drain and a channel of the transistor from the silicon substrate.
Abstract:
A method for fabricating a finFET device having an insulating layer that insulates the fin from a substrate is described. The insulating layer can prevent leakage current that would otherwise flow through bulk semiconductor material in the substrate. The structure may be fabricated starting with a bulk semiconductor substrate, without the need for a semiconductor-on-insulator substrate. Fin structures may be formed by epitaxial growth, which can improve the uniformity of fin heights in the devices.
Abstract:
A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack. The gate stack may include a first dielectric layer over the channel region, a first diffusion barrier layer over the first dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second dielectric layer over the first electrically conductive layer, a second diffusion barrier layer over the second dielectric layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
Abstract:
A tensile strained silicon layer is patterned to form a first group of fins in a first substrate area and a second group of fins in a second substrate area. The second group of fins is covered with a tensile strained material, and an anneal is performed to relax the tensile strained silicon semiconductor material in the second group of fins and produce relaxed silicon semiconductor fins in the second area. The first group of fins is covered with a mask, and silicon-germanium material is provided on the relaxed silicon semiconductor fins. Germanium from the silicon germanium material is then driven into the relaxed silicon semiconductor fins to produce compressive strained silicon-germanium semiconductor fins in the second substrate area (from which p-channel finFET devices are formed). The mask is removed to reveal tensile strained silicon semiconductor fins in the first substrate area (from which n-channel finFET devices are formed).