Abstract:
A method for management of the programming controls in a multilevel device is provided. During the control step cells are not controlled all together but they are conveniently selected in order to reduce the source resistance and consumption effect, but without penalizing change times.
Abstract:
A control system for the characteristic parameters of an active filter includes: a system for the determination of the technological distribution of the components that provides the information related to said technological distribution of the components; an elaboration system for said information related to said technological distribution of the components; an active filter including at least two programmable passive circuital elements receiving said information related to said technological distribution of the components; said elaboration system, being aware of the topology for said active filter, comprises means for determining the value for said at least two programmable passive circuital elements; means for correcting the value for said at least two programmable passive circuital elements according to the value of the information related to said technological distribution of the components; means for determining the programming values for said at least two programmable passive circuital elements.
Abstract:
A method for performing a Simon's or Shor's quantum algorithm over a function encoded with n qubits is provided. The method includes performing a superposition operation over a set of input vectors for generating a superposition vector, performing an entanglement operation for generating a corresponding entanglement vector, and performing an interference operation for generating a corresponding output vector. The superposition operation is carried out in a comparably fast manner by generating the superposition vector by identifying the non-null components thereof and by calculating, as a function of the n qubits, the value nulln/2 of all the non-null components of the superposition vector, and by calculating indices of these components according to an arithmetic succession. The seed of this calculation is 1 and the common difference is 2n. The method may be implemented in a quantum gate.
Abstract:
A method for detecting the angular position of a rotor in a brushless electric motor, of the type in which the emission of a polarity signal of the back electromotive force by a detection circuitry associated with the motor, includes the using a bi-directional counter for counting the residence time difference of the logic states null0null and null1null at the output of the detection circuitry. The method is aimed at improving the detection of the instantaneous position of the rotor in a brushless motor through the detection of the zero-crossing signal.
Abstract:
An inertial sensor with failure threshold includes a first body and a second body, which can move relative to one another and are constrained by a plurality of elastic elements, and a sample element connected between the first body and the second body and shaped so as to be subjected to a stress when the second body is outside of a relative resting position with respect to the first body. The sample element has at least one weakened region. The sensor may also include additional sample elements connected between the first and second bodies.
Abstract:
An ion-implantation machine has an implantation chamber with a vent inlet; a vacuum pump is connected to the implantation chamber through a vacuum valve. A pipe connects the vent inlet of the implantation chamber to a source of a fluid containing oxygen. The fluid containing oxygen is preferably environmental air. A flow-rate control valve is arranged on the pipe and is activated only after closing the vacuum valve.
Abstract:
A micro-electro-mechanical device formed by a body of semiconductor material having a thickness and defining a mobile part and a fixed part. The mobile part is formed by a mobile platform, supporting arms extending from the mobile platform to the fixed part, and by mobile electrodes fixed to the mobile platform. The fixed part has fixed electrodes facing the mobile electrodes, a first biasing region fixed to the fixed electrodes, a second biasing region fixed to the supporting arms, and an insulation region of insulating material extending through the entire thickness of the body. The insulation region insulates electrically at least one between the first and the second biasing regions from the rest of the fixed part.
Abstract:
The program to be executed is compiled by translating it into native instructions of the instruction-set architecture of the processor system, organizing the instructions deriving from the translation of the program into respective bundles in an order of successive bundles, each bundle grouping together instructions adapted to be executed in parallel by the processor system. The bundles of instructions are ordered into respective sub-bundles, said sub-bundles identifying a first set of instructions, which must be executed before the instructions belonging to the next bundle of said order, and a second set of instructions, which can be executed both before and in parallel with respect to the instructions belonging to said subsequent bundle of said order. There is defined a sequence of execution of the instructions in successive operating cycles of the processor system, assigning each sub-bundle to an operating cycle, thus preventing simultaneous assignment to the same operating cycle of two sub-bundles belonging to the first set of two successive bundles. The instructions of the sequence may be executed by the various processors of the system in conditions of binary compatibility.
Abstract:
The cells of the stacked type each comprise a MOS transistor formed in an active region of a substrate of semiconductor material and a capacitor formed above the active region; each MOS transistor has a first and a second conductive region and a control electrode and each capacitor has a first and a second plate separated by a dielectric region material, for example, ferroelectric one. The first conductive region of each MOS transistor is connected to the first plate of a respective capacitor, the second conductive region of each MOS transistor is connected to a respective bit line, the control electrode of each MOS transistor is connected to a respective word line, the second plate of each capacitor is connected to a respective plate line. The plate lines run perpendicular to the bit line and parallel to the word lines. At least two cells adjacent in a parallel direction to the bit lines share the same dielectric region material and the same plate line. In this way, the manufacturing process is not critical and the size of the cells is minimal.
Abstract:
The timing system includes a plurality of timing units interconnected to perform a count operation. Software programmable registers interconnect the plurality of timing units, and a control circuit generates a clock signal for the plurality of timing units. The control circuit includes an interface for connection to an external bus to receive and transmit data.