Abstract:
A method of printing a liquid ink which is produced from a heat activated dye which is selected from a limited group of dyes which are capable of transfer at low energy. A printer which uses liquid ink, such as an ink jet printer, prints an image onto an intermediate substrate medium. The dyes contained in the ink are not substantially activated during the process of printing on to the medium. The image formed by the printed ink is transferred from the medium to a final substrate by the application of heat and pressure for a short period of time to activate the ink. The dye and dispersing/emulsifying agent(s) are selected from a limited group to produce an ink which permits thermal transfer at low energy, with the resulting image, as deposited on the final substrate, having an optical density of 1.0 or greater.
Abstract:
An image is printed on a medium by means of an electrographic device using an ink composition comprising heat activated inks, without substantial activation of the inks during the process of printing the image onto the medium. A molecular sieve added to the ink composition assists activation control. The image is transferred from the medium to the object on which the image is to permanently appear by applying sufficient heat and pressure to the medium to activate and permanently transfer the inks from the medium to an object.
Abstract:
An image is printed on a medium by means of an ink jet printer using an ink composition comprising heat activated ink solids, without activating the ink solids during the process of printing onto the medium. The image is transferred from the medium to the object on which the image is to permanently appear by applying sufficient heat and pressure to the medium to activate and transfer the ink to the object.
Abstract:
The present invention is devices and processes for producing digitally imaged products. Multiple digital images are encrypted with public keys that are unique to each digital image of the multiple digital images. A purchaser or producer of the product(s)to be imaged selects a digital image from the multiple digital images. A purchaser or producer provides payment information to the central computing device for an imaged substrate or substrates imaged with the digital image selected. An imaged product producer is provided with a private key. The imaged product producer decrypts the digital image using a private key assigned to the imaged product producer, and the imaged product producer produces an imaged substrate comprising the selected digital image formed on the substrate. Payment for the imaged substrate is allocated to participants, including allocating a portion of the payment for the imaged product to one or more creators of the digital image.
Abstract:
An image is formed on a transfer medium comprising a hydrophilic tackifier. Any portion of the image that is dimensionally insufficient to permanently adhere the image to the receiver substrate is determined, and a colorless liquid ink comprising water is applied to cover and surround the portion of the image that is dimensionally insufficient to permanently adhere the image to the receiver substrate. When heat is applied to the image to transfer the image layer to a receiver substrate, water in the image layer swells the image layer and the hydrophilic tackifier becomes sufficiently tacky to permanently adhere the image to the receiver substrate.
Abstract:
Devices and methods related to high-contrast liquid crystal displays (LCDs) are provided. For example, such an electronic device may include an LCD with two liquid crystal alignment layers not symmetric to one another and upper and lower polarizing layers respectively above and below the alignment layers. Light transmittance through the plurality of pixels may increase monotonically with gray scale voltage. The display may operate using a gray scale level 0 voltage higher than a minimum gray scale level 0 voltage capability of the display. Additionally or alternatively, liquid crystal molecular alignment axes of the two alignment layers may be offset from one another by an angle other than a multiple of 180 degrees. Additionally or alternatively, a first polarizing axis of the upper polarizing layer or a second polarizing axis of the lower polarizing layer, or both, may be neither parallel nor perpendicular to one of the liquid crystal molecular alignment axes.
Abstract:
A computer system using 3D IC is cooled by using liquid coolants such as water, oil, and ionic liquid. Liquid coolant flows in a closed coolant conduit which is configured thermally to contact heat-generating components and a liquid-liquid heat exchanger. The heat generated in 3D IC chips is carried out by liquid coolant and dissipated to heat exchanger where cooling water dissipates heat to large water body. For economic stable operation, cooling water is pumped from large water body such as river to a water tower where water level is kept constant to ensure heat exchanger work at optimal condition. The simple approach for computer system cooling provided in this disclosure is a cost-effective data center efficiency solution.
Abstract translation:使用3D IC的计算机系统通过使用液体冷却剂如水,油和离子液体来冷却。 液体冷却剂在封闭的冷却剂管道中流动,其被热构造以接触发热部件和液体 - 液体热交换器。 3D IC芯片产生的热量由液体冷却剂进行,并散发到热交换器,在这种情况下,冷却水将热量散发到大型水体。 为了经济稳定运行,将冷水从河水等大型水体泵送到水位保持不变的水塔,确保热交换器在最佳状态下工作。 本公开中提供的简单的计算机系统冷却方法是具有成本效益的数据中心效率解决方案。
Abstract:
A computer system (taking server as an example) is cooled by using liquid coolants such as water, oil, and ionic liquid. Liquid coolant flows in a closed coolant conduit which is configured thermally to contact heat-generating components and a liquid-liquid heat exchanger. The heat generated in computer chips is carried out by liquid coolant and dissipated to heat exchanger where cooling water dissipates heat to large water body. For economic stable operation, cooling water is pumped from large water body such as river to a water tower where water level kept constant to ensure heat exchanger work at optimal condition. The simple and effective approach for computer system cooling provided in this disclosure is a cost-effective data center efficiency solution.
Abstract:
A wireless communication method, a terminal and a base station are provided. The method includes the step of transmitting a plurality of best companion pre-coding matrix indexs (BCIs) and corresponding delta channel quality indicators (ΔCQIs) from the terminal to the base station, wherein the period of frames for transmitting the plurality of BCIs is larger than the period of frames for transmitting a single BCI. The method, terminal and base station according to the present disclosure can greatly increase scheduling flexibility at base station side and improve MU-MIMO performance without increasing feedback overhead of channels.
Abstract:
A system and method for an advanced GNSS receiver that is operable to provide an ultra-fast, autonomous and reliable TTFF that does not require an initial position, at the same time, minimizing processing power and hardware cost. The system and method is able to reliably recover the time of transmission of the received signals using I/Q sample lengths on the order of milliseconds, and is capable of operating autonomously without the need of aiding technologies such as the AGPS technology for which there are privacy and service availability concerns.