Abstract:
A low-noise PNP transistor comprising a cutoff region laterally surrounding the emitter region in the surface portion of the transistor. The cutoff region has such a conductivity as to practically turn off the surface portion of the transistor, so that the transistor operates mainly in the bulk portion. The cutoff region is formed by an N.sup.+ -type enriched base region arranged between the emitter region and the collector region.
Abstract:
A low-consumption and high-density D flip-flop circuit implementation, particularly for standard cell libraries, which comprises a master section and a slave section, is disclosed and claimed. The master section includes a master latch structure, a master coupling circuit which connects the master latch structure to one of two supply voltages, and an input coupling circuit for applying data to the flip-flop. The slave section includes a slave latch structure directly interposed between two supply voltages, and a slave coupling circuit which connects the slave latch structure to the master latch structure. The number of transistors required to realize the D flip-flop circuit implementation of the invention is minimized by enlarging the source areas of transistors in the input coupling circuit, which results in a large stray capacitance and insures optimum operation of the master latch. In addition, transistors in the slave latch structure have non-minimal gate lengths. Furthermore, a single clock signal is used to enable both master and slave sections. The ability to use a single clock signal without local regeneration coupled with minimizing the number of required components facilitates higher integrated circuit density and reduces power consumption.
Abstract:
The invention relates to a memory comprising a matrix of memory cells; a plurality of gates for transmitting respective selection outputs of a row decoder to respective rows of the matrix; a dummy bit line having an equivalent load as bit lines associated to columns of the matrix and which is discharged by a dummy memory cell when any row is selected; and circuitry for precharging the bit lines and the dummy bit line when no row is selected, and enabling said gates for transmission of the selection outputs of the row decoder in response to a clock signal. Each gate has an input coupled to the dummy bit line such that the gate is disabled as soon as the dummy bit line has discharged to a switching threshold of the gate.
Abstract:
A programming voltage is supplied to a control gate of a non-volatile memory cell via a control gate line. A supply voltage is coupled to a first plate of a capacitor and a reference voltage is coupled to a second plate of the capacitor. The supply voltage is then uncoupled from the first plate and the reference voltage is uncoupled from the second plate. Next, the reference voltage is coupled to the first plate to generate the programming voltage on the second plate.
Abstract:
A method of injecting a whitening random signal in a Sigma Delta modulator with a high-pass transfer function of a quantization noise filter of a certain order, for converting a digital audio signal sampled at a certain clock frequency into an analog signal, comprises the steps of generating a flat-spectrum dither signal, filtering the dither signal with a high-pass transfer function of an order higher than the order of the transfer function of the Sigma Delta modulator, and summing the filtered signal to the sampled digital audio signal, quantized by the modulator. The method prevents the occurrence of disturbances that would otherwise occur as a result of intermodulation of subtle colorations observable in the vicinity of the Nyquist frequency. The disclosed hardware implementation of the method adds little to the hardware complexity.
Abstract:
A process including the steps of forming a gate oxide layer on a semiconductor substrate; masking the gate oxide layer with a nitride mask forming openings in the gate oxide layer using the nitride mask; and forming, at the openings, tunnel oxide regions of a thickness smaller than the thickness of the gate oxide layer. The nitride mask presents a thickness smaller than the width of the openings to improve etching of the gate oxide layer and subsequent washing. The mask also protects the covered layers when etching the gate oxide and growing the tunnel oxide regions, and is removed easily without damaging the exposed layers.
Abstract:
A sense and protection circuit against short circuits for digital outputs, comprising a logic gating circuit of the exclusive OR type (EX1) which has a first input terminal connected to a signal input node (IN) and an output terminal which is connected to an input terminal of a signal level shifter output stage (B). A second logic gating circuit of the exclusive OR type (EX2) has a first input terminal connected to the input node (IN) and a second input terminal connected, through an inverting circuit (IN1), to an output terminal (OUT) of the output stage (B). A second input terminal of the first logic gate circuit is coupled to an output terminal of the second logic gate circuit through a comparator circuit (SCH1) and a delay circuit means (C,R,D).
Abstract:
The current flowing through a cell to be read, forming part of a nonvolatile memory array and presenting a characteristic with a predetermined slope, is amplified N times and compared with a reference current presenting a two portion characteristic: a first portion extending between a predetermined threshold value and a trigger value, and presenting a slope equal to that of the memory cell characteristic, and a second portion extending from the trigger value, and presenting a slope amplified N times with respect to that of the cell characteristic and therefore equal to the amplified slope of the cell.
Abstract:
The circuit, in accordance with the present invention is for detecting the presence at a signal input of a high voltage higher than a predetermined value and signaling it to a signal output through a logical type signal. The circuit comprises one or more first transistors of MOS type and of a predetermined conductivity type, each being diode-connected and having its body terminal connected to the source terminal, and having principal conduction paths connected in series for current conduction between a first node and a ground input. The circuit also includes two or more second transistors of the MOS type and of the same conductivity type, with each one being diode-connected and having its body terminal connected to the source terminal and having principal conduction paths connected in series for current conduction between the signal input and the first node. At least one first logical inverter of the CMOS type has its input connected to the first node and its output coupled to the signal output and is also connected for power supply to a power supply input and to the ground input.
Abstract:
ROM memories made in MOS or CMOS technology with LDD cells may be programmed advantageously in a relatively advanced stage of fabrication by decoupling an already formed drain region from the channel region of cells to be permanently made nonconductive (programmed) by implanting a dopant in an amount sufficient to invert the type of conductivity in a portion of the drain region adjacent to the channel region. In CMOS processes, the programming mask may be a purposely modified mask commonly used for implanting source/drain regions of transistors of a certain type of conductivity. By using high-energy implantation and a dedicated mask, the programming may be effected at even later stages of the fabrication process.