Abstract:
A porous ion exchanger includes an open cell structure including interconnected macropores and mesopores whose average diameter is in a range of 1 to 1000 μm existing on walls of the macropores. Moreover, a total pore volume is in a range of 1 to 50 ml/g, ion exchange groups are uniformly distributed, and an ion exchange capacity is not less than 0.5 mg equivalent/g of dry porous ion exchanger. The porous ion exchanger can be used as an ion exchanger filled into a deionization module of an electrodeionization water purification device, solid acid catalyst, adsorbent, and filler for chromatography.
Abstract:
Methods are disclosed for the electrodeionization and removal of at least some of at least one type of ion from an ion-containing particulate material comprising passing a direct current for a sufficient time between (a) an anode and (b) a cathode, wherein the anode and the cathode are both in electrical contact with an aqueous slurry of the particulate material, wherein the anode is in electrical contact with an anion exchange membrane and wherein the cathode is in electrical contact with a cation exchange membrane, thereby causing the removal of at least some of the at least one type of ion to be removed from the particulate material. Also disclosed are devices for the electrodeionization and removal of at least some of at least one type of ion from an ion-containing particulate material.
Abstract:
In a device for electro-deionization (EDI) in the demineralization of aqueous solutions, which device includes ion exchange membranes arranged alternately and in spaced relationship so that between the membranes compartments are formed of which at least some are filled with cation and anion resin exchange particle fractions forming a mixed bed ion exchanger, the ion exchange resin particles of one of the two fractions include a magnetic material and a magnetic field generator is provided for generating a field for orienting the magnetic resin particles and arranging them in parallel chains extending between the membranes.
Abstract:
A liquid treatment process is described for sequential removal of ionic species of progressively decreasing ionic strength without precipitation or “scaling.” An aspect of the invention includes dual electrodeionization operations. The first electrodeionization operation is performed at a voltage calculated to remove strongly ionized species such as calcium and magnesium from the feed water without scaling. The product of the first electrodeionization operation is then subjected to a second electrodeionization operation. The second electrodeionization operation is performed at a voltage greater than the first electrodeionization operation, and is designed to remove more weakly ionized species such as silica and carbon dioxide, preventing scaling. More than two successive electrodeionization operations may be performed if desired. Multiple electrodeionization operations may occur in a single electrodeionization stack or in multiple electrodeionization stacks.
Abstract:
A water treatment system provides treated or softened water to a point of use by removing a portion of any hardness-causing species contained in water from a point of entry coming from a water source, such as municipal water, well water, brackish water and water containing foulants. The water treatment system typically treats the water containing at least some undesirable species before delivering the treated water to a point of use. The water treatment system has a reservoir system in line with an electrochemical device. The electrochemical device of the water treatment system is operated at a low current and low flow rate to minimize water splitting or polarization, which minimizes scale formation.
Abstract:
The present invention is directed to a water treatment or purification system and method for providing treated water in industrial, commercial and residential applications. The treatment system provides treated or softened water to a point of use by removing at least a portion of any hardness-causing species contained in water from a water source, such as municipal water, well water, brackish water and water containing foulants. The water treatment system includes an electrochemical device, such as an electrodeionization device, that can have at least one compartment that generates and traps hydrogen ions which can be used in another compartment of the electrochemical device such as, an electrode compartment, to reduce or at least dissolve any scale. Other applications of the system would be in the treatment and processing of foods and beverages, sugars, various industries such as the chemical, pharmaceutical, waste water treatment and power generating industries.
Abstract:
The invention provides the continuous, integrated methods and devices for substantially removing ionized and ionizable carbon compounds from an aqueous stream by first deionization step to produce a first product stream, ionizing nonionized and nonionizable carbon compounds in such stream to form further ionized and ionizable compounds, and removing the latter by a second deionization step. The method can be performed for example in an apparatus including an EDI unit (10), an ionizing unit (60), and EDI unit (100).
Abstract:
An electrodeionization apparatus and method for purifying a fluid. A fluid, such as water, can be purified by removing weakly ionizable species from the fluid. Weakly ionizable species may be dissociated at different pH levels to facilitate removal from the fluid in an electrodeionization device.
Abstract:
A system for decontamination of radioactive components includes an acidic decontamination solution which is exposed to radioactive components to remove a layer of contaminated material and an ion exchange cell which removes the radioactive contamination from the decontamination solution. The ion exchange cell has cathode, anode and central compartments. The decontamination solution flows into the central compartment and the radioactive cations in the solution are drawn towards the cathode. The acidity in the cathode chamber is controlled so that small radioactive metal particles are deposited on the cathode. A cathode solution flows over the cathode which removes the deposited radioactive particles. The cathode solution and small particles flow into a waste collection container where the metal particles settle to the bottom of the container where they are easily separated from the solution. The only waste product produced by the system are the small radioactive metal particles which are easily disposed of. All liquids used in the decontamination process may be recycled.
Abstract:
An apparatus for removing charged contaminants from a water stream. The apparatus can be figured to provide the decontaminated water stream to an analytical system. Methods of use of the same are also disclosed.