Abstract:
In a window regulator, and a method of producing the same, which moves a slider base along a guide rail via wires in accordance with rotation of a drum, includes a fitting portion having a first protrusion and a second protrusion provided on a drum housing which supports the drum, wherein the first protrusion protrudes from an abutting surface of the drum housing with which an end surface of the guide rail can come into contact and wherein the second protrusion protrudes from the abutting surface by a smaller amount of protrusion than that of the first protrusion, and the drum housing and the guide rail are joined by restricting movement of the guide rail in the thickness direction thereof by inserting the guide rail in between the first protrusion and the second protrusion. Workability during manufacturing of the window regulator is thereby improved.
Abstract:
The method includes a step of fixing the other end of the drive wire to the drive drum; a step of temporarily placing one end of the drive wire in a temporary placement portion provided on the drum housing; and a step of applying tension to the drive wire by moving the one end of the drive wire to an engaging portion provided on the drive drum after canceling the placed state of the one end of the drive wire in the temporary placement portion by pulling a portion of the drive wire on the one end side thereof by winding a portion of the drive wire on the other end side thereof by the drive drum with the one end of the drive wire placed in the temporary placement portion.
Abstract:
A door cable pulley system for use with a motor vehicle having a closure movable between an open and closed position. The door cable pulley system includes a first tension pulley, a second tension pulley, a cable drum driven by a motor, and a pair of drive cables. The first drive cable includes a first end coupled to the cable drum and a second end coupled to the closure, where the first drive cable extends from the cable drum, passes over the first tension pulley, and exits the body through the second exit opening. The second drive cable includes a first end coupled to the cable drum and a second end coupled to the closure, where the second drive cable extends from the cable drum, passes over the second tension pulley, and exits the body through the first exit opening.
Abstract:
A door cable pulley system for use with a motor vehicle having a closure movable between an open and closed position. The door cable pulley system includes a first tension pulley, a second tension pulley, a cable drum driven by a motor, and a pair of drive cables. The first drive cable includes a first end coupled to the cable drum and a second end coupled to the closure, where the first drive cable extends from the cable drum, passes over the first tension pulley, and exits the body through the second exit opening. The second drive cable includes a first end coupled to the cable drum and a second end coupled to the closure, where the second drive cable extends from the cable drum, passes over the second tension pulley, and exits the body through the first exit opening.
Abstract:
An automatic opening/closing apparatus for vehicle, which is provided with a tensioner mechanism for applying a predetermined tension to a cable member, is downsized. A case of a driving unit is provided with a tensioner housing, and the tensioner mechanism for applying the predetermined tension to a cable is accommodated in the tensioner housing. The tensioner mechanism includes a pulley holder movably mounted on a guide shaft, and a spring for biasing the pulley holder, wherein a movable pulley is rotatably supported by the pulley holder. The cable drawn in the tensioner housing is wound about the movable pulley so that a direction in which the cable is drawn out from the case is substantially parallel to a direction in which the cable is drawn out from a driving drum, whereby the predetermined tension is applied to the cable by a spring force of the spring.
Abstract:
Under a method to control a sliding speed in accordance with this invention, the motor is initially accelerated for a predetermined reference speed, and then during the initial acceleration period, if a rotational speed of the wire drum is of and above a given value, a difference between a rotational speed of the wire drum and a rotational speed of the motor is of and above a given value, and a rate of acceleration of the wire drum is of and above a given value, the rotational speed of the motor is reduced temporarily judging the slide door is in a state of abnormal acceleration, and then the motor is accelerated again at a lower rate than the initial acceleration toward the reference speed.
Abstract:
A reel drum is rotatably supported on a board, and a tensioner case is detachably mounted to the board in the vicinity of the reel drum. Wires are extended from the reel drum in directions opposite to each other. A pair of tension rollers pressed onto the respective wires and roller holders rotatably supporting the respective tension rollers are attached to the tensioner case to be allowed to move in directions substantially orthogonal to the respective wires when the wires are tensioned. Moreover, the tensioner case is provided with biasing means to bias the roller holders in directions that the tension rollers are pressed onto the respective wires. The biasing means is a torsion spring. A contact portion of each roller holder which a wire end extended portion of the torsion spring is in contact with has an angle shape with a ridge aligned in a direction orthogonal to the wire end extended portion of the torsion spring.
Abstract:
A door assembly is provided that includes integral impact regions that obviate the need for a separate impact beam. The door assembly includes an outer panel and an inner panel, operably connected to the outer panel so that a compartment is formed therebetween. At least one hardware-mounting surface is integrally formed from the inner panel and extends towards the outer panel. Each of the hardware mounting surfaces is operable to mount a hardware component between the inner and outer panels. At least one integrally-formed impact region is provided on the inner panel that is operable to strengthen the door assembly and increase its intrusion resistance of the vehicle door during a collision. The inner panel has substantially no large access openings that would be deleterious to impact resistance and substantially seals the vehicle passenger compartment from the external environment. The at least one impact region is also displaced at least as far away from the outer panel as the at least one hardware mounting surface.
Abstract:
A slide door apparatus for a vehicle includes a reel member disposed at one of a vehicle body and a slide door for opening and closing a door opening formed in the vehicle body and a rope member reeled by the reel member and connected at a terminal end of the rope member to the other of the vehicle body and the slide door. The rope member is unreeled from the reel member so as to rotate the reel member in one direction and reeled within the reel member in accordance with a rotation of the reel member by means of a biasing force in the other direction. The slide door apparatus also includes a rotating device including an internal rotor rotating in accordance with the rotation of the reel member and generating a rotating load depending on a rotating speed of the internal rotor.
Abstract:
A vehicle door module comprises a drive shaft for displacing a displacement device, particularly a window lifter. The vehicle door module and the displacement device can be assembled together in any particular position of rotation of the drive shaft.