Abstract:
A walking assistance device, for example, a walking cane, a walking crutch, or walker includes a gas storage vessel for providing an ambulatory supply of medicinal gas for a user of the device. The gas storage vessel is formed from a plurality of polymeric hollow chamber having either an ellipsoidal or spherical shape and interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The gas storage vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The container system further includes a fluid transfer control system attached to the gas storage vessel for controlling fluid flow into and out of the gas storage vessel and a gas delivery mechanism for delivering gas from the gas storage vessel to a user in a breathable manner.
Abstract:
A wheeled personal transport device, for example, a wheelchair, includes a pressure vessel for providing a portable supply of medicinal gas for a user of the transport device. The pressure vessel is formed from a plurality of polymeric hollow chamber having either en ellipsoidal or spherical shape and interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The pressure vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The container system further includes a fluid transfer control system attached to the pressure vessel for controlling fluid flow into and out of the pressure vessel and a gas delivery mechanism for delivering gas from the pressure vessel to a user in a breathable manner.
Abstract:
An improved cryogenic liquid storage tank features a main tank containing a ullage tank. The top portion of the main tank communicates with the bottom portion of the ullage tank through a pipe segment and an opening in the ullage tank. The pipe segment is dimensioned and positioned so that the main tank fills with incoming cryogenic liquid while the ullage tank remains primarily empty. The restricted flow into the ullage tank causes the flow of cryogen into the main tank to decrease when the main tank is nearly full. This decrease in flow is utilized to terminate the filling of the tank. Removal of product from the main tank decreases the pressure and the liquid level therein so that liquid flows out of the ullage tank and is unable to return.
Abstract:
A pressure vessel for holding a pressurized fluid such as compressed natural gas ("CNG") includes two end cells and zero or more interior cells. The cell geometry ensures that the cells meet one another at tangential circular surfaces, thereby reducing the tendency of adjacent cells to peel apart. A web secured about the cells includes two sheets that are tangent to the cells. Unused volumes between the cells and the web contain wedges of foam or rubber. A valve provides fluid communication between the interior of the pressure vessel and a pressurized fluid line. The filled weight of one pressure vessel does not exceed the filled weight of a conventional gasoline tank that occupies substantially the same space as the pressure vessel. The pressure vessel may be configured with exterior recesses for engaging conventional gasoline tank straps.
Abstract:
A reinforced composite structure (29) is disclosed. The structure is formed by opposed layers of material extending over a core and continuous bundles stitched in a repeating pattern through the opposed layers (30, 32) and the intermediate core (28) to form the reinforced composite structural member (29).
Abstract:
A road tanker for carrying two or more separate cryogenic liquids in which the inner tank of the vacuum insulated system is divided by a sheet of material of similar thermal expansion properties to those of the tank. This allows the cryogenic liquids to equilibrate in temperature. Also provided, external or internal to the tank, is a variable inline mixing system so that the appropriate mixture of cryogenic liquids can be dispensed upon delivery.
Abstract:
A tank for compressed natural gas utilizes internal tension members. The tank has an upper half and a lower half, each half being formed with at least two cylindrical portions separated by a Y-shaped junction. The sections of each half have engagement members in the interiors. The engagement members include a head and a socket which slide longitudinally together to secure the upper and lower halves against tension due to the gas pressure.
Abstract:
A compressed gas storage tank comprises a multi-layer sheet metal sandwich structure with a predetermined pattern of solid state diffusion bonds between all the neighburing layers. After the sheets have been solid state diffusion bonded together in the flat condition, the tank is blow formed between dies under superplastic forming conditions to produce at least one superplastically expanded core layer for containing the compressed gas. The configuration of the core layer is determined by the diffusion bond pattern. The expanded core layer provided internal bracing for the tank to give in rigidity and enable it to withstand the high internal pressures.
Abstract:
The invention consists in a double storage tank with an upper storage tank disposed above a lower storage tank, the storage tanks being separated by a thermally insulative wall, in which said thermally insulative wall is a double-skin wall comprising a rigid bulkhead towards the upper storage tank and a skin towards the bottom storage tank which is permeable to gases but impermeable to the liquid in the bottom storage tank, said rigid bulkhead and said skin being held apart.
Abstract:
A dual gas pressure vessel is divided into a first chamber 22 and a second chamber 24 by collapsible bellows 16. As the gas in the first chamber is dishcarged through an exhaust 29 the bellows collapse until a plate 20 is pierced by a probe 32, following which the gas in the second chamber 24 is vented. A support 26 for the plate 20 ensures that, during charging of the vessel, the first and second chambers are well defined in volume.