Abstract:
A hermetically sealed filtered feedthrough assembly for an AIMD includes an insulator hermetically sealed to a conductive ferrule or housing. A conductor is hermetically sealed and disposed through the insulator in non-conductive relation to the conductive ferrule or housing between a body fluid side and a device side. A feedthrough capacitor is disposed on the device side. A first low impedance electrical connection is between a first end metallization of the capacitor and the conductor. A second low impedance electrical connection is between a second end metallization of the capacitor and the ferrule or housing. The second low impedance electrical connection includes an oxide-resistant metal addition attached directly to the ferrule or housing and an electrical connection coupling the second end metallization electrically and physically directly to the oxide-resistant metal addition.
Abstract:
A temporary medical lead in which stimulating electrical energy is transmitted to body tissue through the lead electrodes via ionic conduction within the hydrogel material is described. The hydrophilic hydrogel material consists of a porous structure into which conductive salt ions are diffused. In addition the structure of the hydrogel material can be loaded with a single or combination of therapeutic drugs which is elutable from the electrode.
Abstract:
A controller for implementing a method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, where such arbitrary waveforms can also be used for charge balancing purposes.
Abstract:
The present disclosure involves a method of data-reducing and storing a sensation map. A sensation map associated with a patient is provided. The sensation map includes a graphical depiction of a sensation experienced by the patient. The sensation may be pain or paresthesia experienced by the patient in response to an electrical stimulation therapy. A data file is generated. The data file has a data size less than a data size of the sensation map. The data file contains digital information allowing a reconstruction of the sensation map. Electronic communication is then established with an implanted medical device located inside the patient's body. Thereafter, the data file is sent to the implanted medical device for storage. The stored data files are retrievable by another clinician programmer later to reconstruct the sensation map.
Abstract:
The present disclosure involves a method of setting stimulation parameters for neurostimulation. A plurality of stimulation parameters available for bracketing is displayed. The stimulation parameters are selected from the group consisting of: stimulation current amplitude, pulse width, frequency, and contact location. Thereafter, in response to an input from a user, at least a subset of the stimulation parameters is selected for bracketing. A respective initial value is then obtained for each of the stimulation parameters in the selected subset. Thereafter, a bracketing process is used to generate a plurality of bracketed values for each of the stimulation parameters in the selected subset. The bracketed values are generated as a function of the initial value. A plurality of stimulation pulses is then delivered to a patient through a neurostimulator that is automatically programmed with a different combination of the bracketed values for the stimulation parameters for each stimulation pulse.
Abstract:
A method of visualizing a user interaction with a clinician programmer is disclosed. A user engagement with respect to a screen of the clinician programmer is detected via one or more sensors associated with the screen of the clinician programmer. One or more locations on the screen of the clinician programmer corresponding to the user engagement is determined. An external monitor is communicatively coupled to the clinician programmer. The external monitor displays one or more cursors that graphically represent the one or more locations on the screen of the clinician programmer corresponding to the user engagement, respectively.
Abstract:
The present disclosure involves an electronic device for visualizing a sensation experienced by a patient. The electronic device includes a touchscreen display configured to receive a tactile input from a user and display a visual output. The electronic device includes a memory storage component configured to store programming code. The electronic device includes a computer processor configured to execute the programming code to perform the following tasks: generating, in response to the tactile input from the user, a three-dimensional (3D) sensation map that represents the sensation experienced by the patient; deriving a two-dimensional (2D) sensation map based on the 3D sensation map, wherein the 2D sensation map contains substantially less data than the 3D sensation map; and sending the 2D sensation map over a network to facilitate a reconstruction of the 3D sensation map using the 2D sensation map.
Abstract:
Methods and apparatus for implanting a neural stimulation lead in a patient's body are described. A lead assembly comprises a pointed-tip stylet, a stimulation lead, and an optional tube to deploy a fixation element attached to the lead. One embodiment of the implant methods starts with inserting the pointed-tip lead assembly directly into tissue. After the desired implant position is determined, the pointed-tip component is separated from the stimulation lead and removed from the tissue, leaving the stimulation lead implanted. After confirmation that the stimulation lead is in the right, tissue location, the pointed-tip component is removed from the body, leaving the stimulation lead in place. The stimulation lead can be connected to a neurostimulator to delivery therapies to treat neural disorders, such as urinary control disorders, fecal control disorders, sexual, dysfunction, and pelvic pain, etc.
Abstract:
An electrical stimulation apparatus including a medical device. The medical device includes: a housing component having at least one electrically conductive area. The medical device includes a plurality of conductors configured to be electrically coupled to a distal electrode array. The electrode array are implantable in a human body. The medical device includes a stimulation circuit positioned inside the housing component. The stimulation circuit includes a plurality of controllable stimulation channels. A first subset of the stimulation channels is electrically coupled to the conductors. A second subset of the stimulation channels is electrically coupled to the electrically conductive area of the housing component. The stimulation circuit is operable to simultaneously create a first stimulation path in the electrode array and a second stimulation path that extends from the electrode array to the housing component.
Abstract:
In various examples, an apparatus includes a needle cannula including a proximal end and a distal end The needle cannula includes a lumen extending from the proximal end to the distal end. A handle is disposed at the proximal end of the needle cannula. An electrocautery receiver is associated with the handle and electrically coupled to the needle cannula, wherein, with an electrocautery device activated and placed within the electrocautery receiver, electrical energy is conducted from the electrocautery device to the distal end of the needle cannula to selectively electrocauterize tissue in contact with the distal end of the needle cannula.