Abstract:
This disclosure provides systems, methods and apparatus for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor. The system may include a display device with at least one input device. In response to movement of or along the input device, the display device may change a glucose data output parameter and update an output of the display device using the changed output parameter.
Abstract:
Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods. For example, a sensor system 180 is provided having a first working electrode 150 comprising a first sensor element 102 and a second working electrode 160 comprising a second sensor element 104, and a reference electrode 108 for providing a reference value for measuring the working electrode potential of the sensor elements 102, 104.
Abstract:
The present invention relates generally to systems and methods for improved electrochemical measurement of analytes. The preferred embodiments employ electrode systems including an analyte-measuring electrode for measuring the analyte or the product of an enzyme reaction with the analyte and an auxiliary electrode configured to generate oxygen and/or reduce electrochemical interferants. Oxygen generation by the auxiliary electrode advantageously improves oxygen availability to the enzyme and/or counter electrode; thereby enabling the electrochemical sensors of the preferred embodiments to function even during ischemic conditions. Interferant modification by the auxiliary electrode advantageously renders them substantially non-reactive at the analyte-measuring electrode, thereby reducing or eliminating inaccuracies in the analyte signal due to electrochemical interferants.
Abstract:
Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.
Abstract:
Systems and methods of use involving sensors having a signal-to-noise ratio that is substantially unaffected by non-constant noise are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
Abstract:
Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
Abstract:
Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
Abstract:
Methods and apparatus are provided for communication among display devices and sensor electronics unit in an analyte monitoring system. The analyte monitoring system may include a sensor that is configured to perform measurements indicative of analyte levels. The sensor may be communicatively coupled to the sensor electronics unit. The sensor electronics unit may be configured to transmit data indicative of analyte levels to the display devices using one or more communication protocols. Furthermore, the sensor electronics unit may be configured to operate in multiple modes, and switch between the modes in response to commands received from the display devices. Related systems, methods, and articles of manufacture are also described.
Abstract:
Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises activating a transceiver of a first communication device associated with an analyte sensor at a first time. The method also includes establishing a two-way communication channel with the second communication device. The activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
Abstract:
Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods. For example, a sensor system 180 is provided having a first working electrode 150 comprising a first sensor element 102 and a second working electrode 160 comprising a second sensor element 104, and a reference electrode 108 for providing a reference value for measuring the working electrode potential of the sensor elements 102, 104.