Abstract:
A semiconductor device including a transistor having excellent electrical characteristics is provided. Alternatively, a semiconductor device having a high aperture ratio and including a capacitor capable of increasing capacitance is provided. The semiconductor device includes a gate electrode, an oxide semiconductor film overlapping the gate electrode, an oxide insulating film in contact with the oxide semiconductor film, a first oxygen barrier film between the gate electrode and the oxide semiconductor film, and a second oxygen barrier film in contact with the first oxygen barrier film. The oxide semiconductor film and the oxide insulating film are provided on an inner side of the first oxygen barrier film and the second oxygen barrier film.
Abstract:
An aperture ratio of a semiconductor device is improved. A driver circuit and a pixel are provided over one substrate, and a first thin film transistor in the driver circuit and a second thin film transistor in the pixel each include a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide semiconductor layer over the gate insulating layer, source and drain electrode layers over the oxide semiconductor layer, and an oxide insulating layer in contact with part of the oxide semiconductor layer over the gate insulating layer, the oxide semiconductor layer, and the source and drain electrode layers. The gate electrode layer, the gate insulating layer, the oxide semiconductor layer, the source and drain electrode layers, and the oxide insulating layer of the second thin film transistor each have a light-transmitting property.
Abstract:
In a video voltage comparator circuit, an average of first video voltages applied to pixel electrodes of pixels in the second-half rows in a k-th frame period (k is a natural number) is compared with an average of second video voltages applied to pixel electrodes of pixels in the first-half rows in a (k+1)th frame period for each row. In an overdrive voltage switching circuit, when a difference obtained from the comparison in the video voltage comparator circuit is greater than or equal to a threshold value, the overdrive voltage in the (k+1)th frame period is switched to a first overdrive voltage, and when the difference obtained from the comparison in the video voltage comparator circuit is less than the threshold value, the overdrive voltage in the (k+1)th frame period is switched to a second overdrive voltage lower than the first overdrive voltage.
Abstract:
A liquid crystal display device capable of consuming less power and a method for driving the liquid crystal display device are provided. The liquid crystal display device includes a pixel portion, a light supply portion sequentially supplying lights of a plurality of hues to the pixel portion, a counter counting the number of frame periods, a signal generator determining timing of inverting the polarity of an image signal every plural consecutive frame periods by using data on the number of frame periods counted by the counter, and a controller inverting the polarity of the image signal in accordance with the timing. A plurality of pixels are provided in the pixel portion. The image signal whose polarity is inverted every plural frame periods is input to the plurality of pixels.
Abstract:
An object of the present invention is to suppress deterioration in the thin film transistor. A plurality of pulse output circuits each include first to eleventh thin film transistors is formed. The pulse output circuit is operated on the basis of a plurality of clock signals which control each transistor, the previous stage signal input from a pulse output circuit in the previous stage, the next stage signal input from a pulse output circuit in the next stage, and a reset signal. In addition, a microcrystalline semiconductor is used for a semiconductor layer serving as a channel region of each transistor. Therefore, degradation of characteristics of the transistor can be suppressed.
Abstract:
A power storage device having high capacitance is provided. A power storage device with excellent cycle characteristics is provided. A power storage device with high charge and discharge efficiency is provided. A power storage device including a negative electrode with low resistance is provided. A negative electrode for a power storage device includes a number of composites in particulate forms. The composites include a negative electrode active material, a first functional material, and a compound. The compound includes a constituent element of the negative electrode active material and a constituent element of the first functional material. The negative electrode active material includes a region in contact with at least one of the first functional material or the compound.
Abstract:
A display device including a display portion with an extremely high resolution is provided. The display device includes a pixel circuit and a light-emitting element. The pixel circuit includes a first element layer including a first transistor and a second element layer including a second transistor. A channel formation region of the first transistor includes silicon. The first transistor has a function of driving the light-emitting element. The second transistor functions as a switch. A channel formation region of the second transistor includes a metal oxide. The metal oxide functions as a semiconductor. The second element layer is provided over the first element layer.
Abstract:
A flexible touch panel is provided. Both reduction in thickness and high sensitivity of a touch panel are achieved. The touch panel includes a first flexible substrate, a first insulating layer over the first substrate, a transistor and a light-emitting element over the first insulating layer, a color filter over the light-emitting element, a pair of sensor electrodes over the color filter, a second insulating layer over the sensor electrodes, a second flexible substrate over the second insulating layer, and a protective layer over the second substrate. A first bonding layer is between the light-emitting element and the color filter. The thickness of the first substrate and the second substrate is each 1 μm to 200 μm inclusive. The first bonding layer includes a region with a thickness of 50 nm to 10 μm inclusive.
Abstract:
A touch panel with higher sensing accuracy or higher detection sensitivity is provided. The touch panel includes a first conductive layer, a second conductive layer, a plurality of display elements, and a scan line. In a plan view, the first conductive layer has an outline including a first portion that is linear and parallel to a first direction. In the plan view, the second conductive layer has an outline including a second portion that is linear and parallel to the first direction. The first portion and the second portion face each other. The display element is in a position not overlapping with the first conductive layer nor the second conductive layer. The scan line has a portion extending in a second direction. An angle between the first direction and the second direction is greater than or equal to 300 and less than or equal to 60°.
Abstract:
A scan line to which a selection signal or a non-selection signal is input from its end, and a transistor in which a clock signal is input to a gate, the non-selection signal input to a source, and a drain is connected to the scan line are provided. A signal input to the end of the scan line is switched from the selection signal to the non-selection signal at the same or substantially the same time as the transistor is turned on. The non-selection signal is input not only from one end but also from both ends of the scan line. This makes it possible to inhibit the potentials of portions in the scan line from being changed at different times.